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SUMMARY

The intensity of a ground motion is often measured by its maximum value, such as
peak acceleration or velocity. However, from the viewpoint of structural performance
evaluation and design, an intensity measure (IM) that is related more directly to
structural responses and, accordingly, to structural damage, is more desirable. Luco
and Cornell proposed a simple IM extending the idea of modal superposition of the
årst two modes with the square-root-of-sum-of-squares (SRSS) rule and taking a
årst-mode inelastic spectral displacement into account. This IM achieved a marked
improvement over simply using the response of an elastic oscillator; however, as
a \predictor" of structural response, it does not capture well large displacements
caused by local yielding. A possible extension of Luco's IM is discussed in this paper
that considers a post-elastic mode shape.

1. INTRODUCTION

The intensity of a ground motion is often measured by its maximum value, such as peak acceleration
or velocity. However, from the viewpoint of structural performance evaluation and design, an in-
tensity measure that is related more directly to structural responses and, accordingly, to structural
damage, is more desirable. For example, the spectral acceleration of an elastic oscillator is often
considered as an intensity measure. As a \predictor" (or estimate) of seismic demands, however,
it does not take into account the inelastic response or the higher-order response of a structure.
Several predictors that target inter-story drift angles have been proposed using the results of a
nonlinear static pushover (NSP), which in the last decade became a practical engineering tool for
estimating the inelastic response of a multi-story frame.

The Limit Strength Calculation method (LSC) was introduced in the Enforcement Order in Japan
in 2000 as a seismic design rule for ordinary building structures. Considering the inelastic årst-mode
response, inter-story drifts are evaluated (Kuramoto et al. 2001). However, the higher-order-mode
responses are neglected, and accordingly, the response at upper stories of a long-period building
are not generally estimated accurately (Mori, 2004).

Luco (2002) and Cornell proposed an intensity measure using the årst two elastic modes and the
square-root-of-sum-of-squares (SRSS) rule of modal combination, and also taking into account a
årst-mode inelastic spectral displacement. This intensity measure achieved a marked improvement
over simply using the response of an elastic oscillator. However, as a predictor it does not capture
well the eãects of P-Delta in lower stories and the corresponding \isolation" eãect in upper stories.

This paper presents a new predictor of seismic demand that is based on Luco's intensity measure
but considers a post-elastic mode shape. The accuracy of the predictor is demonstrated for several
steel moment-resisting frame (SMRF) buildings.
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2. BUILDING MODELS

In this investigation of the accuracy of predictors, two-dimensional åshbone models of one low- and
two mid-rise SMRF buildings are considered; the four- and nine-story buildings designed according
to Japanese practice are denoted as JP4 and JP9, respectively, and the nine-story building designed
according to U.S. practice is denoted as SAC9. The årst- and second-mode periods, T1 and T2,
and Rayleigh damping ratios, h1 and h2, of each building model are listed in Table 1.

The åshbone model of a frame condenses all of the columns in a story into a single column, and
all of the beams in a çoor into a singe rotational beam spring. Accordingly, the number of degrees
of freedom can be reduced signiåcantly while keeping almost the same accuracy as nonlinear
dynamic analysis (NDA) of a full-frame model (Nakashima et al., 2002; Luco et al., 2003). The
key assumption is that the rotations at all of the beam-column connections in a çoor are identical.
The details of this condensation are explained in (Nakashima et al., 2002), but a few important
characteristics of the åshbone models considered in this paper are listed here:

(1) The single beam spring for each çoor is trilinear, while bilinear plastic hinging at the column
ends and splices is modeled for all but JP9 (explained below). The ratios of the strain-
hardening slope to the elastic slope for the beams, ãB , and for the columns, ãC , of each
building model are listed in Table 1. Column P-M interactions due to tributary gravity
loads, but not due to varying axial forces caused by overturning, are taken into account.

(2) Global (but not member) P -Å eãects are accounted for, with all applicable gravity loads
placed on the åshbone column.

Other details speciåc to each of the three buildings are provided in the subsections below.

2.1 JP9 Building

JP9 is a 9-story SMRF building designed directly as a åshbone models as follows:

èThe height of each story is 4.0m, and the mass is distributed equally among the çoors.
èThe story-shear force distribution coeécient, Ai, is given by

Ai = 1=
p
ãi (1)

where ãi is the ratio of the mass above the i-th story to the total mass of the building.

èAssuming that the inçection point of each column is located at the mid-height of each story,
all the beams are designed to yield simultaneously when the normalized base shear, C0, is
equal to 0.2. The stiãness is designed so that the inter-story drift angle at this point is 1/200
of the height of each story.

èWhen C0 = 0.3, the moments at all of the beams and at the column base of the årst story
are equal to their maximum strengths.

èThe hinging at the årst-story column base is modeled as rigid-perfectly-plastic, while the rest
of the åshbone column is assumed to be elastic.

Table 1: Structural characteristics of åshbone models

Building Model T1 T2 h1 h2 ãB ãC
(sec) (sec) (%) (%) (%) (%)

JP9 1.50 0.56 2.0 2.0 0 0 (base column of the 1st çoor)
SAC9 2.24 0.84 2.0 1.1 3 3
JP4 0.79 0.28 2.0 2.0 2 1
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Figure 1: Nonlinear static pushover curves

èThe ratio of the elastic stiãness of a beam spring to that of the column is unity.

2.2 SAC9 Building

SAC9 is a 9-story perimeter SMRF building designed for Los Angeles conditions by consulting
structural engineers as part of Phase II of the SAC Steel Project (FEMA 355C, 2000). Only
one of the 5-bay perimeter MRF's is modeled, although gravity loads from half of the building
are considered since they contribute to the P -Å eãect. The interior frames are assumed to resist
gravity loads only.

2.3 JP4 Building

JP4 is a 4-bay and 4-story SMRF building designed by a structural engineer according to Japanese
practices (The BRI and Kozai Club, 1995). Unlike SAC9, all of the perimeter and interior frames,
and all of the beam-column connections of JP4 are moment-resisting. Only one of these frames is
modeled, taking into account its tributary gravity loads.

The NSP curves for all of the models using lateral load patterns proportional to the Ai-distribution
given in the Enforcement Order in Japan are illustrated in Figs.1(a)JP9, (b)SAC9, and (c)JP4.
More detailed descriptions of the SAC9 and JP4 buildings can be found in (Luco et al., 2003).

3. EARTHQUAKE GROUND MOTION RECORDS

So-called \nearby-åeld" earthquake records were selected from the PEER Strong Motion Database
(http://peer.berkeley.edu/smcat) according to the following criteria: (i) closest distance to the
rupture surface less than 16km, (ii) earthquake moment magnitude greater than or equal to 6.0,
(iii) recorded on \stiãsoil" or \very dense soil and soft rock" (e.g., FEMA 273 (1997) site classes
D or C, respectively), and (iv) high-pass-ålter corner frequency less than or equal to 0.25 hertz.
Only the strike-normal components are used. Of the resulting 73 nearby-åeld ground motions, 70
were recorded in California, and the other 3 were recorded in Erzican (Turkey), Tabas (Iran), and
Kobe. A detailed list of the earthquakes can be found in (Luco, 2002). Despite their proximity to
the earthquake source, it is important to note that not all of the nearby-åeld earthquake records
are \pulse-like" (i.e., not all exhibit a low frequency, large amplitude pulse in the velocity time
history). In fact, less than half of the nearby-åeld ground motions are recorded in the region where
forward rupture-directivity eãects are anticipated, and even those are not all pulse-like (Luco,
2002).
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4. EXISTING PREDICTORS

Among existing predictors, the LCM predictor and Luco's intensity measure (considered as a
predictor) are brieçy reviewed in this section and their accuracy is investigated.

4.1 Limit Capacity method

In the LCM method the inter-story drift angles of a building are evaluated as follows (Kuramoto
et al., 2001):

(1) Determine the step-by-step \shear force - story drift relationship" for each story by a NSP
with lateral load pattern proportional to the Ai-distribution determined in the Enforcement
Order in Japan.

(2) Determine the step-by-step SA-SD relationship according to the Capacity Spectrum approach
(Freeman, 1978):

SAj =

Pn
i=1mi Åé2ij

(
Pn
i=1mi Åéij)2

QBj (2)

SDj =

Pn
i=1mi Åé2ijPn
i=1mi Åéij

(3)

in which QBj and éij are the base shear and the drift of the i-th story at the j-th step of the
NSP, respectively, mi is the mass at the i-th çoor, and n is the number of stories.

(3) Simplify this Capacity Spectrum curve to be trilinear.

(4) Determine the backbone curve (Q-Å relation) of the equivalent nonlinear SDOF system by
setting Q = SA ÅMe and Å＝SD, where Me is the equivalent mass when the building is in
its elastic range.

(5) Perform NDA to evaluate the maximum drift, Åmax, of the equivalent SDOF system with
the backbone curve determined in Step (4) and Me.

(6) Find the step number, np, of the NSP at which the drift SD = Åmax.

(7) Assume that the shear forces and story displacements at the np-th step of the NSP from Step
(1) are those of the multi-story frame subjected to the ground motion of interest. This is the
predictor of inter-story drift angle for the k-th story, í̂LCMk .

4.2 Luco's Predictor

Luco and Cornell proposed an intensity measure using the årst two elastic modes and the SRSS
rule of modal combination, multiplied by the ratio of a årst-mode inelastic spectral displacement
to the årst-mode elastic spectral displacement (Luco and Cornell, 2003):

í̂Lucok = PF1;k ÅSID (T1; h1; éy; ã)
s
1 +

fPF2;k ÅSD(T2; h2)g2
fPF1;k ÅSD(T1; h1)g2 (4)

in which SD(T1; h1) is the elastic spectral displacement of a SDOF system with natural period T1
and damping factor h1, S

I
D (T1; h1; éy; ã) is the inelastic spectral displacement of a bilinear SDOF

system with yield displacement éy and strain hardening ratio ã (in addition to T1 and h1), and
PFj;k is the participation factor of the j-th mode (for the k-th story) deåned by
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Figure 2: NSP curve for the JP9 model, and the backbone curves åt to it

PFj;k = Äj
ûj;k Äûj;kÄ1

Hk
(5)

where ûj;k is the element of the j-th mode vector that corresponds to the k-th çoor, Hk is the
height of the k-th story, and

Äj =

Pn
i=1ûj;i ÅmiPn
i=1û

2
j;i Åmi

(6)

The backbone curve of the inelastic SDOF system (i.e., éy and ã) is based on the roof drift versus
base shear curve from a NSP of the structure. If the NSP curve is either nearly plastic or degrading,
the curve is idealized as elastic-perfectly-plastic (i.e., ã= 0 ) to determine éy. The elastic slope
of the idealization follows the elastic points of the NSP curve, whereas the perfectly-plastic slope
passes through the peak base shear (up to a roof drift angle of 0.10 rad). The intersection of the
two slopes provides an estimate of the roof drift angle at yield, denoted (íroof )y (see Fig.2(a)),
which is translated into éy according to Eq.(7)

éy = (íroof )y Å
nX
k=1

Hk
é
(Ä1 Åû1;n) (7)

4.3 Accuracy of Existing Predictors

The accuracy of a predictor is expressed by (i) its bias, a, deåned by the \median" (strictly the
geometric mean) of í=í̂, which is the ratio of the demand computed via NDA of the model structure
to the corresponding value of the predictor, and (ii) its \dispersion," õ, deåned by the standard
deviation of the natural logarithms of í=í̂. The bias, a, and the precision, õ, are equivalently
obtained by performing a one-parameter log-log linear least-squares regression of í on í̂. The
regression model is expressed by

ln(í) = ln(a) + ln(í̂) + ln(") (8)

in which " is the random error in ígiven í̂with (by deånition) median 1 and dispersion õ. The
predictor of ímax (the maximum peak story drift angle over all stories), as well as the predictor of
ík (the peak story drift angle for story k), are compared with the quantities numerically evaluated
by NDA in the following.
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Figure 3: Regressions of íon í̂LCM for the åshbone model of JP9
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Figs.3 (a)-(d) illustrate the regressions of (a) ímax and ík (k =(b) 1, (c) 5, (d) 9) on the predictor
í̂LCMmax and í̂

LCM
k , respectively, for the JP9 building subjected to the nearby-åeld earthquake records.

A thick solid line in each ågure shows the regression relation.

The bias and the dispersion of the LCM predictor at the årst and the åfth stories are relatively
small, although the response tends to be slightly underestimated. However, the bias and the
dispersion is very large (a=1.49 and õ=0.42) at the ninth story. In the LCM method, only the
årst-mode response is considered, and the inter-story drifts from the NSP at the step corresponding
to the maximum drift of the inelastic SDOF system are directly used as the peak response to a
ground motion. For buildings in which the NSP drifts at some stories stop increasing, or even
decrease, with increasing lateral loads, there will be an upper limit on the drifts predicted by the
LCM in those stories (e.g., see Fig.1(a)).

Figs.4 (a)-(d) illustrate the regressions of (a) ímax and ík (k =(b) 1, (c) 5, (d) 9) on the predictor
í̂Lucomax and í̂

Luco
k , respectively, also for the JP9 building. The bias and the dispersion of í̂Lucomax and

í̂Lucok are generally small. However, some systematic deviations from the regression line can be
observed at the årst and ninth stories. At the årst story, the predictor tends to underestimate
the larger responses; in contrast, it tends to overestimate the responses near yielding (í1 ô 0:005),
possibly because of the simple approximation of the backbone curve of the SDOF system as bilinear
(see Fig.2(a)). At the ninth story, í̂Lucok tends to overestimate the larger responses, while it tends
to underestimate the smaller responses, possibly because of the neglect of the modal responses
higher than the second.

Figs.5 (a) and (b) illustrate, for two diãerent ground motions, ík and í̂Lucok for the JP9 building,
plotted story-wise. It can be observed in these ågures that the predictor does not capture the large
responses at lower stories. Only the elastic årst- and second-mode shapes are considered in Luco's
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predictor, but the large responses at the lower stories after yielding are not predicted well using
only the elastic mode shapes. Accordingly, it is necessary to consider a post-elastic mode shape.

Since each mode shape changes as plastic hinges are formulated, a post-elastic mode shape must
consider the ductility level. One idea is to track the formulation of plastic hinges in the NSP and
perform an eigen value analysis for each stage. However, this is complicated. Another possibility
is investigated in the next section.

5. PREDICTOR CONSIDERING POST-ELASTIC MODE SHAPE

Based on the observations in the previous section, an improved predictor based on Luco's intensity
measure is proposed in this section by considering (i) a post-elastic mode vector dependent upon
the ductility level, (ii) a more appropriate backbone curve for the equivalent SDOF system, and (iii)
higher-order modal response. Assuming that a post-elastic mode vector, ûI1, can be approximated
by the distribution of story drifts from a NSP, it is determined for each ground motion by taking
the following steps (see Fig.6).

(1) Perform a NSP with the lateral load pattern proportional to the Ai-distribution given in
the Enforcement Order in Japan, which takes into account the eãects of higher-order modal
response,

(2) Obtain the normalized story shear - story drift curve (e.g., see Fig.1), as well as the normalized
base shear, C0, - roof drift, íroof , curve,

(3) Approximate the C0-íroof curve as trilinear with ånal strain-hardening ratio ã= 0 (e.g., see
Fig.2(b)),

(4) Determine the backbone curve of an equivalent SDOF system using Eq.(7). The second
stiãness of the backbone curve, k2, is determined by

k2 = k1 Å(Kroof )2
(Kroof )1

(9)

in which k1 is the elastic stiãness of the SDOF system, and (Kroof )1 and (Kroof )2 are the
elastic and second stiãnesses of the C0-íroof curve approximated in Step (3),

(5) Perform NDA to evaluate the maximum drift, Åmax, of the equivalent SDOF system,

(6) By the inverse of Step (4), ånd the roof drift of the building on the C0-íroof curve corre-
sponding to Åmax,

(7) Determine the step number, np, of the NSP for the roof drift angle found in Step (6),
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(8) Find the story drift at the np-th step of the NSP,

(9) Use the distribution of story drifts obtained in Step (8) as the post-elastic årst-mode shape.

Considering up to the third mode, the proposed predictor of the inter-story drift angle for the k-th
story is evaluated by,

í̂newk =

rn
PF I1;k ÅSID (T1; h1; éy; ã)

o2
+ fPF2;k ÅSD(T2; h2)g2 + fPF3;k ÅSD(T3; h3)g2 (10)

where PF I1;k is evaluated by Eqs.(5) and (6) in which û1;k is replaced with the \inelastic årst-mode
shape" determined above.

It should be noted that the additional work in the above procedure is minimal as NSP is already
carried out to determine an equivalent SDOF system for Luco's intensity measure.

6. NUMERICAL EXAMPLE

Figs.7 (a)-(d) illustrate the regressions of (a) ímax and ík (k =(b) 1, (c) 5, (d) 9) on the predictor
í̂newmax and í̂

new
k for the JP9 building subjected to the nearby-åeld earthquake records. The bias

of í̂newmax becomes closer to unity than that of í̂
LCM
max and í̂Lucomax , and the dispersion decreases by

two-thirds to a half. At the årst story, the underestimation of the large responses and the overes-
timation of the responses near í1 ô 0:005 are improved with respect to Luco's intensity measure
by considering the post-elastic årst-mode shape and adopting a trilinear backbone curve for the
equivalent SDOF system. The underestimation of the smaller responses at the ninth story is also
improved by considering the third-mode response.
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Figs.8(a)-(c) and 9(a)-(c) summarize the bias and the dispersion, respectively, of the LCM, Luco's
and the proposed predictors for the (a)JP9, (b)SAC9, and (c)JP4 buildings subjected to the nearby-
åeld earthquake records. The bias of the proposed method is fairly stable and within the range of
0.9 - 1.1 for all of the buildings. On the contrary, the bias of LCM is fairly large (a > 1:3) at the
upper stories of the nine-story buildings because of the lack of consideration of the higher-order
modes. For the JP9 building, the bias of Luco's intensity measure is comparable with that of the
proposed method, except for at the 9th story; however, for the SAC9 building, relatively large bias
is observed at the middle and upper stories (a > 1:2). For the JP4 building, the biases of all three
predictors are comparable.

It can be observed in Figs.9(a) -(c) that the dispersion of the proposed method is also fairly stable
and less than about 0.20 at every story of all of the buildings. On the contrary, the dispersion of
the LCM predictor and Luco's intensity measure are larger than 0.25 at many stories and even
larger than 0.35 at some stories for the 9-story buildings. The dispersion of the LCM predictor at
the fourth story of the JP4 is larger than that of the other predictors despite the small contribution
of higher-order modal responses.
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7. CONCLUSIONS

Predictors of seismic inter-story drift angles for practical use in structural performance assessment
and design are investigated in this paper. In addition to the inelastic årst-mode spectral displace-
ment considered in Luco's intensity measure based otherwise on SRSS modal combination, it is
proposed to consider (i) a post-elastic årst-mode shape approximated by the distribution of story
drifts from a NSP at the step corresponding to the maximum drift of the equivalent inelastic SDOF
system, (ii) a trilinear backbone curve for the SDOF system, and (iii) the third-mode response for
long-period buildings. Numerical examples demonstrate that the proposed predictor is less biased
and results in less dispersion than Luco's intensity measure and the Limit Strength Calculation
method. Further evaluation of the proposed predictor for additional earthquake records and struc-
tures of diãerent fundamental periods, heights, and conågurations is being conducted in order to
ånd any limitations.
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