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Model 1: Finite Fault Inversion using gCMT plane through NEIC hypocenter.

Model 2: Inversion using revised SIGA plane and depth.

Slip patch located near the hypocenter moves 20 km shallower in revised model.

Such results become significant for any subsequent models that rely on the depth
and distribution of slip:

-Ground shaking estimates (leading to rapid response decisions)

-Tsunami modeling & predictions

INTRODUCTION

Many earthquake source inversions in use today require knowledge of the geometry of the fault on which the earthquake occurred. Our
knowledge of this surface is often uncertain, however (particularly in the immediate aftermath of an earthquake), and as a result fault
geometry misinterpretation can map into significant error in the final temporal and spatial slip patterns of these inversions.

Here we attempt to improve the quality of fast finite-fault inversion results by combining, a priori, several independent and complementary
data sets (historic earthquakes, CMTs, global plate boundaries, bathymetry, active seismic surveys) to more accurately constrain the
geometry of the seismic rupture plane of subducting slabs. We construct probability density functions about each data point based on formal
assumptions of their depth uncertainty and use these constraints to solve for the 'most likely' fault plane, exploring fits with both planar and
polynomial geometries. This new approach allows us to rapidly determine more accurate initial fault plane geometries for source inversions
of future earthquakes. We use these geometries to explore the effect on finite fault model slip distributions, and show that the model changes
can have a significant affect on the assumed seismic hazard above source regions of major subduction zone earthquakes.

Red star = Event hypocenter
Gray circles = 3 months of aftershocks

DATA SELECTION AND FILTERING

EARTHQUAKE SOURCE INVERSIONS - IMPLICATIONS

New interface models facilitate source inversions on planes more closely aligned with the true subduction thrust.
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Model 1: Finite Fault Inversion using gCMT plane
through NEIC hypocenter.

Model 2: Inversion using revised SIGA plane and
depth.

A: All well-constrained thrust mechanisms from the gCMT catalog within 200km of the reference location, deeper than the equivalent
depth of a plane dipping 5°, and shallower than the equivalent depth of a plane dipping 60°, are retained.

B: Using the remaining mechanisms, the average CMT strike is calculated. This angle is assumed to represent the approximate
subduction interface strike. From the reference location, we project back to the nearest point on the trench with this angle to
establish the starting point of our reference profile. Using this trench location and angle, we construct the reference profile. All events
greater than 100 km distance from this profile, in a direction perpendicular to that profile, are removed.
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The remaining region of events is shaded in orange. For those events selected, we construct Normal Distribution Probability Density
Functions about their reported depth, whose variance is based on reported depth error. All events are also weighted by magnitude.
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The dip of the subduction zone is computed in a direction perpendicular to the average strike of selected events by fitting an inclined
plane (and/or polynomial, if warranted by the data) through these PDFs.
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SUBDUCTION ZONE INTERFACE GEOMETRY ANALYSIS (SIGA) EXAMDLE - ANTOFAGASTA, N. CHILE, 2007/11/14

Most likely depth: Planar interface = 41.9km, polynomial = 50.5km
Local data from Husen et al. (1995), Salleres & Ronero (2005), Patzwahl et al. (1999). TRENCH CMT Centroid NEIC Epicenter

EARTHQUAKE SOURCE INVERSIONS - KURIL ISLANDS, 2006/11/1S

Most likely depth: Planar interface = 29.5km.
Polynomial interface = 29.0km.

SLAB1.0 - A model of seismogenic subduction
zone interfaces, merging 2D polynomial profiles
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models produced using a best fitting CMT plane.

Future Enhancements Will Include:

-Further Incorporation of active seismic data (reflection surveys across the trench)
-Incorporating estimates of sediment thickness at the trench

-Routine analyses of subduction interfaces worldwide
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