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Abstract. In this article we present the modelling of uncertainty in strong-motion studies for engin-
eering applications, particularly for the assessment of earthquake hazard. We examine and quantify
the sources of uncertainty in the basic variables involved in ground motion estimation equations,
including those associated with the seismological parameters, which we derive from a considerable
number of strong-motion records. Models derived from regression analysis result in ground motion
equations with uncertain parameters, which are directly related to the selected basic variables thus
providing an uncertainty measure for the derivative variable. These uncertainties are exemplified
and quantified. An alternative approach is presented which is based on theoretical modelling defin-
ing a functional relationship on a set of independent basic variables. Uncertainty in the derivative
variable is then readily obtained when the uncertainties of the basic variables have been defined.
In order to simplify the presentation, only the case of shallow strike-slip earthquakes is presented.
We conclude that the uncertainty is approximately the same as given by the residuals typical for
regression modelling. This implies that uncertainty in ground motion modelling cannot be reduced
below certain limits, which is in accordance with findings reported in the literature. Finally we discuss
the implications of the presented methodology in hazard analyses, which is sensitive to the truncation
of the internal error term, commonly given as an integral part of ground motion estimation equations.
The presented methodology does not suffer from this shortcoming; it does not require truncation of
the error term and yields realistic hazard estimates.

Key words: error analysis, ground motion estimation equation, hazard assessment, regression, strong-
motion, uncertainty, uncertainty analysis

1. Introduction

A fundamental relation in seismic hazard and risk assessment is the attenuation
scaling relationship, or ground motion estimation equation, which is needed to
estimate the strong ground motion at a given site caused by an earthquake of
given characteristics. With such a relationship it is possible to transfer the activity
of a given seismogenic region into the seismic action required for the design of
structures and for risk assessment. The uncertainties involved in this assessment
can be divided into two main categories, referred to as aleatory and epistemic
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uncertainties. Epistemic uncertainties are due to lack of knowledge to describe fully
the phenomenon. Obtaining new data and refining the modelling can reduce these
uncertainties. Aleatory uncertainties, on the other hand, are related to the inherent
unpredictability of earthquake processes. Such uncertainties cannot be reduced. It
is important, however, to be able to quantify these uncertainties correctly in the
design process to ensure adequate safety.

The objective of this paper is to discuss the nature of uncertainties connected
with strong ground motion and quantify them. Furthermore, to give an example
of uncertainty modelling and discuss the implications for engineering design and
hazard assessment.

2. Uncertainty in strong-motion data

Uncertainties in the characterisation of strong ground motion are of two main types,
i.e., uncertainties related to the functional form of the model (formal or internal)
and uncertainties inherent in the input or basic variables used in the modelling. The
basic variables commonly used can be divided into three main categories.
(i) In the first category we have the basic variables which describe the source,
and include magnitude, or seismic moment, epicentral location, depth and source
dimensions. Furthermore, we believe that this category should also include the
type of focal mechanism, which is not always recognised, but is of importance,
especially for distances to source less than four to five times the characteristic
source dimensions.
(ii) The second category contains basic variables characterising the site. These
include distance to the source, as well as variables describing the site conditions
reflecting the local geology and topography.
(iii) The third category includes basic variables describing the wave propagation
process and properties of the ray path from source to site. These variables include
the mechanical properties of the material along the path, including its damping
characteristics. It is common to treat some of these variables as derivative variables
rather than basic variables, for instance, to relate anelastic attenuation to the source
distance.

In the modelling process there is a general tendency towards simplifications
since the best model is the model with the smallest number of basic variables
that predict the derivatives with sufficient accuracy and reliability, conforming to
available data. From the engineering point of view, such a model is preferable as
it simplifies design decisions and makes the design process more robust than is the
case for more complex models.

2.1. DATA

Most of the strong-motion records in the European area, come from events already
analysed by the International Seismological Centre (ISC, 2003), Harvard (2003)
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and from special studies. Many of the earthquakes are of moderate magnitude and
are reported from a relatively large enough number of stations to ensure reason-
able azimuthal coverage. The locations found by ISC are therefore not likely to
be in serious formal error and can be used as initial values for refinement. The
main uncertainty is in depth of focus. For certain parts of Europe focal depth is
an important consideration, particularly for small magnitude events. Teleseismic
locations are known to have larger uncertainties compared with those from local
networks.

The use of a unified magnitude scale in attenuation studies is an important con-
sideration. Our adoption of the surface-wave magnitude MS rather than the local
magnitude ML stems from the fact that the former is not only the best estimator of
the size of a crustal earthquake, but also from the fact that seismicity in Europe is
generally evaluated in terms of MS .

Equally important is the assessment of reliable source distance, particularly in
the near-field, from the location of the recording sites. The distance or source-path
one assigns to a strong-motion record has a significant influence on the close-in
behaviour of attenuation curves, particularly for small events for which location
errors can be many times the source dimension. These errors accrue owing to errors
in source and station location.

For most of the larger earthquakes one may adopt the closest distance to the pro-
jection of the fault rupture. For small-magnitude crustal events the source distance
is close to the epicentral distance. However, the locations of some of the smaller
events are poorly known, and for this reason their position must be re-evaluated.

Local site conditions (soil, topography, instrument location, housing and char-
acteristics) at many strong-motion stations are poorly known, particularly in the
case of old sites that have been moved or abandoned, or for temporary stations
used for aftershock studies. In terms of the soil conditions the majority of sites can
only be described in very general terms at best, such as “soil” or “rock”. There are
however, some stations for which there is no knowledge of the soil conditions.

The topographical details at most stations are even less well described. Where
they do exist, they may be given only in terms of very broad descriptions, such as
“at the top of a hill”, without any reference to the hill dimensions or the surrounding
geomorphology.

Instrument data is usually more readily available, at least in general terms of
the instrument type and the structure in which it is housed. However, it is not
uncommon to have no knowledge of the specific characteristics of the instrument
(sensitivity and damping). Furthermore, it is even less common to have detailed
information regarding the structure in which the instrument is housed.

Some of the differences between ground motion estimation equations, particu-
larly for near-field conditions, often arise from the size of the data sample used
in their derivation, as well as from different distributions, biases and range of
applicability of the variables.
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The use of different magnitude scales also introduces a significant bias with
respect to size and depth of the nucleation of the generating events, particularly
for small (MS < 5.5) and larger (MS > 6.7) earthquakes. For instance, local
magnitude ML saturates much earlier than MS , and for relatively small events,
before the last decade, MS cannot be compared directly with Mw. One of the
reasons for this is that MS is not a linear function of the logarithm of the seismic
moment, log10(Mo), for the whole range of magnitudes. For small events MS and
log10(Mo), have a 1:1 scaling relation; for intermediate magnitudes this ratio is
1:1.5, reaching 1:2 for very large events (Ekstrom & Dziewonski, 1988). In other
words, a model derived from Mw is a non-linear function in terms of MS , for the
same Mo increment, δMS for smaller magnitudes being larger for small than for
large shocks.

Additional differences between different equations arise from the modelling of
ground motion estimation equations and fitting method used to regress the data.
Results can be affected considerably by using a magnitude-dependent shape or a
two-stage regression with weights.

There is no significant variation among different regions for shallow earth-
quakes, and there is remarkable agreement between Europe, western North Amer-
ica and New Zealand. One should not give much credence to differences in ground
motion estimation equations between different countries; there is little physical
basis for groupings within political boundaries. Some of these apparent differ-
ences arise from the limited subsets of data and their different distributions and
biases. Ideally, individual tectonic regions should have their own relationships, but
at present this is not feasible because of the limited available data. Comparison
of results from the European dataset shows that regional differences are not very
large, certainly for near-field predictions (Douglas, 2003b). They are all within the
standard deviation of the residuals determinations, which are not better than by a
factor of 1.7.

2.2. REGRESSION MODELLING

Modelling based on regression analysis provides far the most common approach to
establish ground motion estimation equations, often called attenuation relationship.
Douglas (2003a) has given a comprehensive overview of these models encountered
in the literature.

Both linear and non-linear regression methods are applied. Most ground motion
estimation equations found in the literature have the following basic form:

log10 (a) = f (M,R, source, soil) + Pσ (1)

where, a denotes the absolute value of the strong-motion variable, for instance, the
larger component of the horizontal peak ground acceleration; M is the earthquake
magnitude; R is the distance to the causative fault, while source and soil refer to
the source parameters and soil conditions at the site, respectively; σ reflects the
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standard error obtained fitting the model to the data, and P is standard normal
distribution with zero mean and unit standard deviation, as it is common to assume
the error term normally distributed (Douglas, 2003a). Hence, P denotes the number
of standard deviations used when estimating the strong-motion variable, a, from
this expression.

The usual definition of the error residuals is the logarithm base 10 of the differ-
ence between the observed and predicted peak ground acceleration, or:

ε = log10

(
aobserved

apredicted

)
(2)

where, aobserved and apredicted refer, respectively, to a data point and the correspond-
ing value predicted by the regression curve. The standard deviation of ε is the
above-mentioned σ , which typically has values in the range 0.2 to 0.3 (Douglas,
2003a).

We find that the standard error is a function of the inherent uncertainty in the
variables M and R as well as in other variables included in the ground motion
estimation equations. This is evident in the case of site conditions as the standard
error derived with uniform soil conditions is smaller than the standard error for
a sample with mixed soil properties. The same applies to source mechanics and
depth. Furthermore, the standard error obtained for a single event is smaller than the
error derived from a sample containing many earthquakes, even in the case where
influences from variables other than M and R are kept as small as possible. This
was first pointed out by Brillinger and Preisler (1985). Applying a ground motion
estimation equation with two variables, M and R, they find that the standard error
could be split into two parts: (a) a contribution related to the variability between
earthquakes, σM = 0.2284, and (b) a contribution related to variability between
records from the same earthquake, σR = 0.1223. This gave a total error σ =√

0.22842 + 0.12232 = 0.259.
This indicates that the total standard error can be considered as being composed

of contributions related to uncertainties inherent in the quantities governing the
physical process and hence the variables of the mathematical model fitted to the
data. Therefore it is not obvious that increasing the number of model variables will
lead to a reduction of the total standard error. On the other hand, a refined model
may better explain the sources of uncertainties than can be done using a simplified
model.

To exemplify the uncertainties involved, let us consider the following simplified
model:

log10 (PGA) = b0 + b1M − log10 (R) + b2R (3)

Here PGA denotes peak ground acceleration (the derivative variable); Mis earth-
quake magnitude; R is a distance parameter defined as R = √

D2 + h2, where D

is the fault distance and h is a depth parameter. The quantities M, D and h are
the basic variables of this model, while PGA is the derivative variable. The basic
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variables can be assumed (for most purposes) as independent, while the derivative
variable clearly is not.

Within the framework of the linear regression analysis this model can be ex-
pressed as (see for instance Draper and Smith, 1998):

y = Ab (4a)

where:

b = [b0 b1 b2]T (4b)

and:

A =




1 x11 x21

1 x12 x22

... ... ...

1 x1n x2n


 (4c)

Here we introduce x1k = M and x2k = R, where the index k refers to the record
number; furthermore:

y =




log10 (PGA1) + log10 (R1)

log10 (PGA2) + log10 (R2)

...

log10 (PGAn) + log10 (Rn)


 (4d)

The least square estimates of the model parameters, Eq. (4b), are obtained as:

b = (
AT A

)−1
AT y (4e)

The residuals can then be estimated using the following expression:

s2
ε = var (ε) = 1

n − 4
(y − Ab)T (y − Ab) (4f)

and, furthermore, the covariance matrix for the b-coefficients is:

Cb = cov (b) = s2
ε

(
AT A

)−1
(4g)

It is worth noting that this leads to b-parameters, which are uncertain, and that this
uncertainty is related directly to the basic variables and the functional form of the
selected model. As outlined above there are clearly well established uncertainties
in M as well as in the epicentre location, which transfers to the source distance
measure applied. These uncertainties are imbedded in the data and will be visual-
ised in the regression model through the distributions of the b-parameters and the
residuals.

To give an example of the uncertainties involved in this procedure, an analysis
was carried out using data from the Imperial College Strong-Motion Databank (see
also Ambraseys et al., 2002). The following selection criteria were used: epicentral
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Table I. Results of the regression analysis

Mean value Standard deviation Coefficient of variation Confidence interval
(95% confidence level)

b0 −1.2780 0.1909 0.1494 −1.6528 −0.9033

b1 0.2853 0.0316 0.1107 0.2233 0.3472

b2 −1.730 10−3 2.132 10−4 0.1232 −0.0021 −0.0013

Table II. Correlation coefficients for the re-
gression

b0 b1 b2

b0 1 −0.9938 −0.0679

b1 1 −0.0076

b2 symmetric 1

distance < 1000 km; magnitude (Mw or MS) in the range 5 to 7; depth < 20 km
and strike slip mechanism. This resulted in 465 records with mixed site conditions.
In the analysis the shortest distance to fault was used as a source distance whenever
available; otherwise the epicentral distance was used. In the analysis only the lar-
ger horizontal component of peak ground acceleration was selected. Furthermore,
the depth parameter was arbitrarily fixed to 8 km. The results of the analysis are
displayed in Figure 1, including the distribution of the residuals. The regression
coefficients are given in Tables I and II along with basic statistics.

It is worth noting that the coefficient of variation for the estimated b-coefficients
is in the range 11 to 15% and also that b0 and b1 are very strongly correlated
with a negative correlation coefficient, which indicates that increase in b0 im-
plies reduction in b1. Furthermore, b0 and b1 are almost uncorrelated with b2. The
strong negative correlation between b0 and b1 appears logical as the peak ground
acceleration is governed by b0 + b1M as the distance D approaches zero.

The lack of correlation between b2, on the one hand, and b0 or b1, on the other,
can be interpreted as a result of zero correlation between M and D which is ob-
vious. Hence, we may conclude that the statistical properties of the b-coefficients
seem in accordance with the statistical properties of the basic variables. It should
be pointed out that for the data used there is a positive correlation between the
peak ground acceleration and magnitude, but negative correlation between the peak
ground acceleration and distance. Also, this is in accordance with the physics of
the process, and it is important to note that peak ground acceleration is correlated
with the basic variables.
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Figure 1. Attenuation of peak ground acceleration in shallow strike slip earthquakes. The
larger horizontal component is displayed. The magnitude and distance measure used are,
respectively, surface-wave magnitude and shortest distance to fault. (a) Normalised horizontal
peak ground acceleration as a function of distance. The solid line is the regression line, and
the dotted lines represent the mean ± one standard deviation. Dots are the data points. (b)
Distribution of residuals compared to normal probability density. The standard deviation is
equal to 0.3368.
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The following model was also studied, using regression analysis (Ambraseys,
1995):

log10 (PGA) = b0 + b1M + b2R + b3 log10 (R) (5)

This model gives slightly smaller residuals than the model given in Eq. (3). Fur-
thermore, the b3-parameter is smaller than −1, which is interesting in view of the
results published in the literature (see for instance Douglas, 2003a). The behaviour
of the b-parameters in this case showed the same main trend as in the previous case
using Eq. (3).

It is also worth noting that this equation can be rewritten as follows, introducing
the magnitude as a derivative response variable:

M = a0 + a1 log10 (PGA) + a2R + a3 log10 (R) (6)

The regression analysis based on this equation, using the above-mentioned data
set, shows that the residuals were approximately normally distributed and with a
standard deviation of the same magnitude as for the peak ground acceleration. We
will apply this result in Section 4.

2.3. ERROR ANALYSIS

In the foregoing we pointed out the uncertainty of the regression parameters and
their functional relationship to the basic variables. This type of uncertainty is nor-
mally not included in the assessment of strong ground motion, and the b-parameters
are treated as constants. On the other hand, the error term in the regression equa-
tion, Eq. (1), is usually accounted for, at least partly, providing a measure of the
total uncertainty in the strong-motion variable. In design decisions it may be useful
to be able to assess the sensitivity of the strong-motion variable to changes in basic
variables. This can be achieved by error analysis.

To give an example of such analysis, let us take a ground motion model:

log10 (a) = A + B MS + C r + D log10 (r) (7a)

where

r =
√

d2 + h2
0 (7b)

Here, a denotes the larger horizontal component of peak ground acceleration (PGA)
in g; d is source distance in km; h0 is a depth parameter in km, and MS is surface-
wave magnitude. The data set applied contained earthquakes in the range 4.0 ≤
MS ≤ 7.4. The regression parameters are given as follows (Ambraseys, 1995):
(1) for horizontal PGA not including focal depth, A = −1.09, B = 0.238, C =
−0.00050, D = −1, h0 = 6.0 and σ = 0.28; (2) for vertical PGA not including
focal depth, A = −1.34, B = 0.230, C = 0, D = −1, h0 = 6.0 and σ = 0.27; (3)
for horizontal PGA including focal depth, A = −0.87, B = 0.217, C = −0.00117,
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D = −1, h0 = h and σ = 0.26 and (4) for vertical PGA including focal depth,
A = −1.10, B = 0.200, C = −0.00015, D = −1, h0 = h and σ = 0.26. This
particular model is selected as its fits data from shallow strike slip earthquakes
fairly well and is hence in accordance with other models considered in this study.
The error in log10(a) is readily derived as follows, taking the depth, h, as a variable:

δ
(
log10 (a)

) = B δMS +
(

C
d√

d2 + h2
+ D

log10 (e) d

d2 + h2

)
δd

+
(

C
h√

d2 + h2
+ D

log10 (e) h

d2 + h2

)
δh (7c)

where δd and δh are uncertainties in source distance and depth, respectively, and
e ≈ 2.71828. If the depth is selected as a fixed value the last term vanishes.

The results are shown in Figure 2, taking the depth as a constant, and in Figure 3
assuming the depth is a variable. It can be seen that the error induced by distance is
greatest close to the epicentre and for shallow focus. By examining Figure 2, it is
seen that the error in peak ground acceleration can be quite high even for realistic
error in magnitude and distance. For instance, MS = 7 ± 0.1 and d = 30 ± 2 km
yield δ(log10(a)) = 0.055, which results, approximately, in 13% error in peak
ground acceleration. This indicates that quite large errors can be expected. Similar
results are obtained by examining Figure 3.

3. Modelling of uncertainties

Up to now we dealt with uncertainties in strong-motion data and associated seismo-
logical parameters qualitatively, by describing the main pathological features en-
countered, and quantitatively, through regression analysis as well as error analysis.
However, to quantify the uncertainties better, and reveal their statistical interrela-
tions, a more thorough analysis is needed. A suitable tool for this type of analysis is
furnished in uncertainty modelling (Ditlevsen, 1981), using the so-called reliability
or performance index concept.

To be able to apply this methodology, we need a well-defined set of basic vari-
ables. Furthermore, we need a functional relationship relating the ground motion
parameters to these basic variables. This is desirable only if this functional rela-
tionship is derived from the basic principles of mechanics and reflects all the main
aspects and core ingredients needed for a theoretical description of the problem.
The theoretical ground motion model adopted for our discussion here is described
in some detail by Ólafsson (1999). It is based on the widely applied Brune spectra
(Brune, 1970, 1971) and is found valid for shallow strike slip earthquakes with
approximately circular faults, i.e., the thickness of the seismogenic zone is not a
significant constraint. From a practical point of view one of the shortcomings of
this model is that it contains many variables, some of which may be difficult to
obtain. A way out of this is to use constraint optimisation to define the parameters,
provided we have reliable data. As pointed out earlier, the lack of data prevents us
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Figure 2. Error in log10(a) according to Eq. (7c) as a function of epicentral distance for
unit uncertainty in basic variables. Based on Eq. (7a) for horizontal peak ground accelera-
tion not including focal depth as a variable but taking parameters A = −1.09, B = 0.238,
C = −0.00050, D = −1, h0 = 6.0 and σ = 0.28. (a) Error term proportional to δd , and (b)
total error given by Eq. (7c) by taking the absolute value of individual terms and substituting
δd = 2 km δM = 0.1 (and δh = 0).
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Figure 3. Error in log10(a) according to Eq. (7c) as a function of epicentral distance and
depth for unit uncertainty in basic variables. Based on Eq. (7a) for horizontal peak ground
acceleration including focal depth as a variable and taking parameters A = −0.87, B = 0.217,
C = −0.00117, D = −1, h0 = h and σ = 0.26 (a) error term proportional to δd , (b)
error term proportional to δh, (c) error terms proportional to δd and δh, respectively, and (d)
total error given by Eq. (7c) by taking the absolute value of individual terms and substituting
δd = δh = 2 km and δM = 0.1.
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Figure 3. (Continued).
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from carrying this out, except for a limited number of special cases. Therefore, a
less rigorous approach will be adopted, using statistical information when available
and heuristic a priori assumptions otherwise. To facilitate the discussion in the
following, we start with some preliminary definitions. This is done to illustrate the
methodology rather than provide accurate statistical information.

3.1. DEFINITIONS AND BASIC ASSUMPTIONS

It is assumed that the performance of a system subjected to (external) environ-
mental disturbances, for instance, ground response or structural response due to
earthquakes, can be described in general by a finite number of uncertain, measur-
able variables, termed basic variables:

X =
{

X1, X2, X3, ..., Xn

}
=

{
M, R, ...

}
(8)

In the following, the basic variables are modelled as independent, stochastic vari-
ables. This implies that the variables are uncorrelated. Furthermore, it is assumed
that the response or performance of the system can be described by a mathem-
atical expression or function, called herein the response function of the system,
exemplified in the following by the ground motion estimation equation That is:

f (X) = 0 (9)

We may consider this function as a hyper-surface in an n-dimensional space of
the basic variables. The response hyper-surface divides the space into two regions,
that is, a region where f (X) > 0 and a region where f (X) < 0, which we could
call, respectively, the safe and the unsafe region if f (X) = 0 describes some sort
of a limit state behaviour. Furthermore, as the basic variables are assumed to be
modelled as stochastic variables, the safe performance of the system can only be
expressed in probabilistic settings, for example, as follows:

Pr
[
f (X) ≥ 0

] = Cp (10)

Here, Pr[·] denotes the probability (of performance), and Cp is a number quantify-
ing this probability.

Within the framework of the reliability index approach (Ditlevsen, 1981), the
basic variables, X, are transformed to a normalised, Gaussian space, where the
transformed variables, u, are normally distributed with zero mean and unit standard
deviation. Hence, the reliability index can be obtained as:

β = min uT u for u ∈
{

u : f (u)
}

(11)

where, u denotes the vector of basic variables in the normalised, Gaussian space
and f (u) is the corresponding response function. The point on the response surface
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with the highest probability density describes the ‘most likely’ performance of the
system. For linear hyper-surfaces, it can be shown that (Ditlevsen, 1981):

β = E
[
f (X)

]
D

[
f (X)

] (12)

where E[] denotes the expectation operator and D[] the standard deviation oper-
ator. Hence, the index can be interpreted as the number of standard deviations that
we have between the mean value and the ‘critical’ boarder. Furthermore, we have:

�(−β) = CP (13)

where, � denotes the standardised normal distributions. If the response surface is
well behaved, we assume that the above model applies with a reasonable degree of
accuracy, which is the case when the performance surface can be described with a
hyper-plane in the vicinity of the performance point.

3.2. PROBABILISTIC MODELLING OF BASIC VARIABLES

The basic variables used to describe the adopted strong-motion model can be se-
lected in different ways. Without going into details, we have selected the following
basic variables, which we judge applicable for the adopted ground motion model
(see Ólafsson and Sigbjörnsson, 1999; Sigbjörnsson and Ólafsson, 2004): mag-
nitude, distance to source, depth, fault radius, shear wave velocity, density, spectral
decay and peak factor. We assume, for the time being, that these variables can
be treated as independent stochastic variables, and that other variables are either
treated as stochastic derivative variables or approximated as deterministic.

The first variable is magnitude, which was discussed in Section 2.1, including
the problems that may arise due to the mixing up of different magnitude scales and
temporal inhomogeneous data. In general, we adopt the surface-wave magnitude
scale for reasons explained earlier.

We find that the uncertainty in MSmagnitude estimates tends towards normal
distribution. However, the standard deviations obtained depend strongly on the
number of stations as well as on their azimuthal distribution.

For Iceland and the Iceland Region we find that the mean value of the standard
deviations for individual events is 0.24, which is close to the values obtained for
events during the last decade for which we have recordings from many stations
(Ambraseys, and Sigbjörnsson, 2000). Hence we can reasonably assume that the
standard deviation of magnitude estimates is quite high.

The ground motion model used does not include magnitude as an explicit vari-
able but instead the seismic moment, Mo. We therefore treat the seismic moment
as a derivative stochastic variable.

For magnitudes of about 6, however, there is a small difference between the
moment magnitude scale, Mw, and the surface-wave magnitude scale, MS . In that
case it is possible to use the Hanks-Kanamori relation (Hanks and Kanamori, 1979)
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to relate seismic moment and magnitude, i.e., Mw = 2
3 log10 (Mo) − 10.7, if Mw >

6 (see also Section 2.1 for large events). These assumptions lead to the following
distribution for the seismic moment:

pMo (Mo) = log10 (e)√
2πσMw

c

1

Mo

exp


−1

2

(
3
2 log10

(
Mo

/
c
) − µMw

σMw

)2

 (14)

where c = 101.5×10.7, e ≈ 2.71828, µMw
and σMw

denote respectively the mean
value and the standard deviation quantifying the normal distribution of the mag-
nitude. It should be noted that the seismic moment is a positive quantity.

To quantify the uncertainty in the seismic moment, let us assume that the mag-
nitude has a mean value of 7.0 and standard deviation 0.24, which gives a coef-
ficient of variation equal to 0.0343. Substituting these values into Eq. (8) and
integrating gives a mean value of the seismic moment equal to 5.00 × 1026 dyn·cm
and standard deviation 4.97 × 1026 dyn·cm. This corresponds to a coefficient of
variation of 0.99, reflecting the great uncertainty inherent in the seismic moment.
In this context it is also worth pointing out the skewness of the distribution given
in Eq. (8) emerging in a modal value (i.e., the most probable value) equal to
1.78×1026 dyn·cm and a median value of 3.55×1026 dyn·cm. This great variability
is in accordance with our experience in computation of seismic moments from
individual records obtained from the same event.

The epicentral distance is Rayleigh distributed (Ditlevsen and Madsen, 1996)
if we assume the coordinates of the epicentre and site location to be normal dis-
tributed. For distances in the far-field, if the coefficient of variation is small, the
distribution can be approximated as normal. In the intermediate field, however, the
Rayleigh distribution is to be preferred. As pointed out earlier, the uncertainty in
distance depends on the source of information, ranging from a few hundred meters
up to several kilometres. For source distances of intermediate range, it appears that
the uncertainty is commonly in the range 1 to 5 km.

Depth is not a well-defined quantity. From a theoretical viewpoint it is seen that
the distribution of depth must be defined on a closed interval, i.e., ranging from
close to the surface, to the thickness of the seismogenic crust. A distribution easily
adopted to these constraints is the beta-distribution. In addition, it can take the
form of a bell-shaped curve in cases where constraints from the boundaries are not
significant. In such cases we believe that a normal approximation can be applied as
well. In such cases we find that a coefficient of variation is in the range 0.1 to 0.2.

The fault radius is a quantity with great inherent uncertainty, which is difficult
to quantify. It is also questionable whether the fault radius should be regarded as a
basic variable, as it is functionally related to the seismic moment, shear modulus
and the amount of slip. We will comment further on this problem later on. Here we
treat the slip as a derivative variable, rather than the fault radius. By definition the
fault radius must be greater than zero, furthermore, it seems natural to have some
upper bounds on its length, for instance, half of the thickness of the seismogenic
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zone. Experience shows that the model adopted (see Sigbjörnsson and Ólafsson,
2004) can be applied with reasonable accuracy even for events with surface faulting
as long as the fault length is not much greater than the thickness of the seismogenic
zone. In these cases we can define the radius for an equivalent circular area equal
to the size of the fault. This may lead to a radius exceeding half of the thickness
of the seismogenic zone by 10% to 20%. In view of this we suggest that the fault
radius can be modelled by beta-distribution that may be approximated by a normal
distribution if there are no significant constraints from the boundaries.

The mechanical properties like shear wave velocity and density are, in most
cases, well-defined quantities, which we assume can be modelled by log-normal
distribution. When doing so, we must keep in mind that these quantities are by
definition positive quantities. The other mechanical properties needed in the adop-
ted model for this study, like shear modulus, are defined as a derivative variable,
using the shear wave velocity and density.

The spectral decay parameter is applied to shape the high frequency tail of
the acceleration spectrum. By definition this variable must be positive, to secure
a bounded integral defining the rms-acceleration. As this variable shows clear nor-
mal tendency, it can be modelled by log-normal distribution. However, a normal
approximation can also be adopted in cases where the values are far enough from
zero.

The peak factor is last on the list of our suggested basic variables. It is defined
in probabilistic settings as the ratio between the peak ground acceleration and the
corresponding rms-value. The peak factor must hence be greater than 1. The dis-
tribution of this variable can be obtained using the theory of extremes (Vanmarcke
and Lai, 1980). However, for simplification it appears acceptable to approximate
its distribution as log-normal.

Other variables included in the adopted strong-motion model are treated as
derivative variables or simply approximated as deterministic constants. It is im-
portant, also for the derivative variables, to investigate any physical boundary or
constraints that may be connected with the variables. Furthermore, it is necessary,
when the uncertainty analysis described above is exercised, to check whether the
critical events can be regarded as physically realisable. This means that all variables
must be within reasonable physical limits.

4. Applications to ground motion estimation models

The uncertainty analysis outlined above is readily applicable to peak ground ac-
celeration and can be used to get estimates for the standard deviation that can be
compared with the standard deviation of the residuals of the regression analysis.
Therefore we can assess whether it is probable that complex models can reduce the
uncertainty of the derivative variables.

To illustrate our point, we use a simplified model for strike-slip earthquakes,
but exclude soil conditions commonly influencing site response. Hence we assume
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Table III. Basic variables for the near-field model assumed normal distributed

Name Symbol Unit Mean value Coefficient of variation

Magnitude
Fault radius
Shear wave velocity
Density
Spectral decay
Peak factor

Mw

r

v

ρ

κo

p

–
km
km/s
g/cm3

–
–

6.6
7.5
3.5
2.8
0.02
2.94

0.02
0.07
0.10
0.07
0.12
0.15

that the peak ground acceleration induced by shear waves in the near-field can be
approximated by the following expression (Sigbjörnsson and Ólafsson, 2004):

a = 1√
π

7

8

p Mo Cp

ρ v r3 √
κo

(
	o

To

)1/2

(15)

where Mo is the seismic moment; v is the shear wave velocity; ρ is density of rock;
r is characteristic fault dimension (radius); κo is the spectral decay factor; p is the
peak factor; 	o is the dispersion function (for further details see Sigbjörnsson and
Ólafsson, 2004); To is the duration, which can be related to source dimension and
shear wave velocity, and Cp is a partitioning factor.

The selected basic variables are given in Table III, where mean values and coef-
ficient of variance are also listed. As a first crude approximation all variables are
taken to be normally distributed. Other variables are assumed to be derivatives or
constants. This applies to the duration parameter To = 3·r/2·υ, the dispersion 	o,
and partitioning factor (Cp = 1/

√
2). Furthermore, the seismic moment is derived

from the moment magnitude applying the Hanks-Kanamori relation.
The estimation of the standard deviation of the peak ground acceleration, using

the approach outlined in Section 3.1, gives σ = 0.239 (corresponding to β = 1).
This value is comparable with the standard deviations reported in the literature
(Douglas, 2003a; Ambraseys and Douglas, 2003).

The sensitivity factors are shown in Figure 4. They represent the sensitivity of
the standardised response surface at the performance point to changes in the basic
variables (Ditlevsen and Madsen, 1996). A low sensitivity factor for a particular
basic variable indicates that there is not a great need to increase statistical inform-
ation about this variable. This may even suggest that this variable can be treated
as deterministic rather than as a stochastic. For the data presented in Figure 4, the
sensitivity factors indicate that the shear wave velocity, density and spectral decay
could perhaps be treated as deterministic. The figure also shows that the improved
statistical information is especially beneficial for the magnitude and the source
radius. On the other hand, reduction of the uncertainties of these variables will
increase the sensitivity factors of the other variables and thereby their importance.



UNCERTAINTY ANALYSIS OF STRONG-MOTION AND SEISMIC HAZARD 339

Figure 4. The relative contribution of the basic variables to the standard deviation. Denotation
of the basic variables: 1 - magnitude, 2 - fault radius, 3 - shear wave velocity, 4 - density, 5 -
spectral decay, and 6 - peak factor.

As a further illustration we may assume that the peak ground acceleration, a,
induced by shear waves in the far-field, which we assume can be approximated as
follows (Ólafsson and Sigbjörnsson, 1999):

a =
(

2
√

7
)2/3

2
√

π

p CP Rθφ 
σ 2/3

v ρ
√

κ

√
	

Td

M1/3
o

R
(16)

Here the following notation is used: Mo is the seismic moment; R is the source
distance; v is the shear wave velocity; ρ is density of rock; 
σ is the stress drop
related to characteristic fault dimension (radius), r (see Ólafsson, 1999); κ is the
spectral decay factor; p is the peak factor; 	 is the dispersion function (Ólafsson
and Sigbjörnsson, 1999), Td is the duration, which can be related to source dimen-
sion, shear wave velocity and distance (Vanmarcke and Lai, 1980), and Cp is a
partitioning factor (Cp = 1/

√
2)

The selected basic variables are listed in Table IV. We assume at this stage
that all the basic variables can be approximated by normal distributions with the
parameters given in Table IV. Other variables are evaluated as derivatives using
the formulae given in Ólafsson and Sigbjörnsson (1999); Ólafsson (1999), and
Sigbjörnsson and Ólafsson (2004).

The obtained standard deviations of the peak ground acceleration for distance
to fault equal to 10 and 50 km are 0.227 and 0.237, respectively (β = 1). The
sensitivity factors are shown in Figure 5. The uncertainty assigned to magnitude
is the greatest single contribution, as was the case for the near-field data shown in
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Figure 5. The relative contribution of the basic variables to the standard deviation. Denotation
of the basic variables: 1 - magnitude, 2 - distance to fault, 3 - depth, 4 - fault radius, 5 - shear
wave velocity, 6 - density, 7 - spectral decay, and 8 - peak factor. (a) Distance to fault 10 km,
(b) distance to fault 50 km.
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Table IV. Basic variables for the far-field model assumed normal distributed

Name Symbol Unit Mean value Coefficient of variation

Magnitude
Distance to fault
Depth
Fault radius
Shear wave velocity
Density
Spectral decay
Peak factor

Mw

D

h

r

v

ρ

κ

p

–
km
km
km
km/s
g/cm3

–
–

6.6
variable
9.0
7.5
3.5
2.8
0.02
2.94

0.02
0.15
0.10
0.07
0.10
0.07
0.12
0.15

Figure 4. It is worth pointing out that the sensitivity factor for depth decreases from
5% for a 10-km source distance to almost zero for a 50-km distance. This seems
in accordance with previous experience and expectance. Furthermore, this implies
that for greater (epicentral) distances the effect of depth is negligible.

These results do not point towards reduction in uncertainty in the peak ground
acceleration, even if the adopted model accounts for more parameters than are
usually used in regression models. Therefore, it seems that complex models are
not likely to decrease uncertainty. On the other hand, the complex model can
explain the sources of uncertainties, and how they contribute to the uncertainty
of the derivative response variable, better than can be done using models with few
parameters. This study indicates in particular that the main source of uncertainty
is attached to magnitude and its inherent uncertainty. The most obvious remedy
to reduce uncertainty appears to be enhancement of magnitude determination or
perhaps seismic moment.

5. Applications to earthquake hazard assessment

In the foregoing it was assumed that all basic variables followed a bell-shaped
distribution, which conforms to the results of the regression analysis. These distri-
butions could be approximated by normal distribution, at least in cases where ‘tail
sensitivity’ was not of importance. When applying the ground motion estimation
equation in hazard and risk assessment, the distribution of magnitude and distance
have to be redefined to reflect the statistical properties of the seismogenic area
to be the studied. In this context the normal distribution and related bell-shaped
distributions are clearly not applicable.

The distribution of epicentral distances for a particular site is derived from the
distribution of epicentres in terms of their geographical coordinates. For a line
source with uniform seismic activity, it is common to treat the epicentres as uni-
formly distributed along the line. For an area source, on the other hand, it is usual
to assume the epicentres uniformly distributed within the area. When assessing



342 R. SIGBJÖRNSSON & N. N. AMBRASEYS

Table V. Basic variables for the near-field model describing a predefined source with assumed
distributions

Name Symbol Unit Distribution Mean value Coefficient of
variation

Magnitude
Fault radius
Shear wave velocity
Density
Spectral decay
Peak factor

Mw

r

v

ρ

κo

p

–
km
km/s
g/cm3

–
–

seismicity dependent1

normal
normal
normal
normal
normal

–
conditional1

3.5
2.8
0.02
2.94

–
0.07
0.10
0.07
0.12
0.15

1See text

the distribution for fault distance, information on fault size and fault orientation
is required in addition to the distribution of epicentres. In both cases this leads
to distribution for distance that deviates significantly from the bell-shaped normal
type distributions.

The magnitude distribution is commonly assumed to be of the exponential type,
often mapped on a closed interval ranging from the magnitude of the smallest
earthquakes, judged to have significant effect on structures, to the magnitude of the
largest earthquake that can credibly originate within the seismic zone in question.
In addition, we need the number of earthquakes originating within each seismic
zone that belong to the predefined magnitude interval. This leads to a magnitude
distribution that is not of the bell type assumed in the previous sections.

The remaining basic variables can in principle be assumed to follow the dis-
tributions discussed earlier. Some of the parameters of these distributions may on
the other hand be dependent on the earthquake magnitude. This applies especially
to the size of the fault, which cannot be treated as independent of magnitude. In
view of this it can be argued that fault size should not be regarded as a basic
variable. However, it is possible to overcome this difficulty by using the principles
of conditional distribution. Other basic variables, discussed in Section 3.2, appear
to fulfil the requirements of independence and will therefore be retained as basic
variables in the hazards assessment.

The methodology described above has been used to obtain hazard curves. Two
cases are considered. The first case refers to site in the near-field and the second
one to a far-field location. The variables adopted and the corresponding distribution
parameters conform to those used earlier as discussed above. The data are summar-
ised in Tables V and VI. In both cases we use a single seismic source area defined
as follows: Line source of length 50 km with uniformly distributed epicentres,
parameters of the magnitude distribution, Mmin = 4, Mmax = 6.3, a = 10 and b =
1.57. The site is at the middle of the fault with the shortest distance to fault equal
to 10 km. In the case of the near-field model only events with epicentres within
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Table VI. Basic variables for the far-field model describing a predefined source with assumed
distributions

Name Symbol Unit Distribution Mean value Coefficient of
variation

Magnitude
Distance to fault
Depth
Fault radius
Shear wave velocity
Density
Spectral decay
Peak factor

Mw

D

h

r

v

ρ

κo

p

–
km
km
km
km/s
g/cm3

–
–

seismicity dependent1

source zone dependent1

normal
normal
normal
normal
normal
normal

–
–
9.0
conditional1

3.5
2.8
0.02
2.94

–
–
0.05
0.07
0.10
0.07
0.12
0.15

1See text

Figure 6. Hazard curve for peak ground acceleration derived using the near-field model. Prop-
erties of seismic source area are described in the text. The following notation is used: dotted
curve based on mean values neglecting uncertainty, solid curve based on suggested uncertainty
modelling and data in Table V, dash-dot curve based on mean values and the introduction of
residual distribution for the peak ground acceleration with σ = 0.25.

radius of 12 km are considered. In the case of the far-field model all earthquakes
described by the source are included.

The results are given in Figures 6 and 7. It is seen that there is a great difference
between the hazard curves obtained, using mean values neglecting uncertainties,
on the one hand (dotted curve), and the hazard curve we get by using traditional
methods based on mean values but additionally introducing uncertainties in the
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Figure 7. Hazard curve for peak ground acceleration derived using the far-field model. Prop-
erties of seismic source area are described in the text. The following notation is used: dotted
curve based on mean values neglecting uncertainty, solid curve based on suggested uncertainty
modelling and data in Table VI, dash-dot curve based on mean values and the introduction of
residual distribution for the peak ground acceleration with σ = 0.25.

form of residuals of the peak ground acceleration (dash-dot curve), especially for
small exceedance probabilities. The results obtained using the suggested uncer-
tainty model are shown by the solid curve. It is seen that this curve shows roughly
the same behaviour as the ‘mean’ curve, the dotted one. Furthermore, it is seen that
the ‘mean’ curve has an upper bound, while the hazard curve, derived using the
un-truncated residual distribution is not bounded as the probability of exceedance
approaches zero. (dash-dot curve), On the other hand, this appears to be the case for
the presented uncertainty model (solid curve). The main advantage of this model is
that it produces values that seem to be sensible and in accordance with experience
as far as they can be inferred.

In this context we note that extending the hazard curves to probabilities of the
order 10−6 or 10−7 may have some formal meaning in statistics. Such low probab-
ilities may reflect also the level of formal risk that the designer is willing to accept.
On the other hand they do not say much when we address the real physical problem
of regional continental seismicity. We know many regions, which have been active
during the last few hundreds of years, and which border faults ceased to be active
103 to 104 years ago; the reverse is also true. In the time scale of more than about
105 years, regional seismicity is predominantly itinerant, and return periods of the
order 106 to 107 are extremely judgemental in nature. Statistical extrapolations
from 20th century data have little validity for periods of this great length.
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6. Discussion and conclusions

Uncertainties in strong-motion recordings and associated seismological paramet-
ers have been discussed both qualitatively and quantitatively. Emphasis has been
put on shallow strike-slip earthquakes and peak ground acceleration. It is found
that the uncertainties in the peak ground acceleration can be explicitly related to
uncertainties in a few basic variables, making it possible to quantify how much
each basic variable contributes to peak ground acceleration or response spectra.
It is found important to select basic variables that are statistically independent.
If that is not possible, a transformation of dependent variables into independent
is recommended, for instance, by using Rosenblatt transformation (Rosenblatt,
1952; Ditlevsen and Madsen, 1996). In some cases conditional distributions can
be applied to simplify this process.

It is found that increasing the number of variables in the ground motion model
for peak ground acceleration does not apparently decrease the standard deviation of
the residuals. This is due to the intrinsic uncertainty of the basic variables. It is also
found that the magnitude (surface- or moment-) contributes most to the uncertainty
in peak ground acceleration. It seems, therefore, that a method to reduce the uncer-
tainty in magnitude or seismic moment is a remedy that would be very beneficial.
The advantages of applying seismic moment are widely appreciated. However, we
find that the seismic moment has inherently great uncertainty, furnished in a skewed
statistical distribution with a standard deviation of the same order of magnitude
as the mean value. Reduction of this uncertainty would have positive effects on
the residuals. Therefore, sophistication of the ground motion estimation model by
the inclusion of additional independent parameters, such as the source dimension,
stress drop, and seismogenic thickness, to mention a few, might be desirable if
the dataset were adequate to determine reliably their influence on strong-motion.
However, even if this were the case, this then places the onus on the engineer
to assess a priori parameters, which are difficult enough to assess even after an
earthquake.

Even though multi-parameter analytical ground motion models as put forward
in this study do not reduce the inherent uncertainty in ground motion, they are
found useful in the analysis of uncertainties as they make it possible to quantify, to
a certain extent, the contribution of individual parameters to the overall uncertainty
in strong-motion variables, like peak ground acceleration and response spectra.

We find that it is of importance to account for source mechanism when deriving
ground motion estimation equations. We suggest that the source mechanics should
be added as a ‘parameter’ to the parameters commonly in use like magnitude,
source distance and soil conditions. Available data already make this feasible.

The assessment of seismic hazard involves MS in both constituent functions, i.e.
in the ground motion estimation equation as well as in the magnitude-frequency
distribution. The former function is based on observations derived from data cov-
ering a long period of time. From the preceding it is obvious that the uncertainty
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in MS is significant not only for the assessment of strong-motion estimates for
modern earthquakes, say of the last three decades, but more so for earlier events
for which the standard error in event magnitude MS rises to 0.35. For historical
events, whose MS is estimated from semi-empirical scaling laws, σ values may
reach 0.5 or more. Thus the uncertainty in MS generally increases as we go back
in time, particularly for the more rare, but important large early events, which plot
near where the magnitude-frequency distribution curve steepens.

The application of the presented models in seismic hazard analysis makes the
treatment of uncertainties more realistic than in the traditional approach. Results
obtained in traditional hazard assessment are sensitive to the truncation of the error
term commonly given as an integral part of ground motion estimation equations.
The presented approach does not suffer from this shortcoming and yields appar-
ently reasonable hazard curves without introduction of artificial constraints. The
benefit of being able to assess hazard without having to invoke arbitrary truncation
limits, is obvious.

The derivation of ground motion estimation equations that follows political or
national boundaries are found not to be desirable and, in principle, without sci-
entific foundation. We recognise, however, that there may be differences between
seismic regions and possibly also seismogenic zones, even though this difference
may not be very significant for the near-source areas, which are often of highest
importance for engineering design. Limitations in data, however, are the main
obstacle to practical use of such information.
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