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Relationships between Median Values and between Aleatory Variabilities

for Different Definitions of the Horizontal Component of Motion

by Katrin Beyer and Julian J. Bommer

Abstract Ground-motion prediction equations (GMPE) for horizontal peaks of
acceleration and velocity, and for horizontal response spectral ordinates, have em-
ployed a variety of definitions for the horizontal component of motion based on
different treatments of the two horizontal traces from each accelerogram. New def-
initions have also recently been introduced and some of these will be used in future
GMPEs. When equations using different horizontal-component definitions are com-
bined in a logic-tree framework for seismic-hazard analysis, adjustments need to be
made to both the median values of the predicted ground-motion parameter and to
the associated aleatory variability to achieve compatibility among the equations. Be-
cause there is additional aleatory variability in the empirical ratios between the me-
dian values for different components, this uncertainty also needs to be propagated
into the transformed logarithmic standard deviation of the adjusted equations. This
study provides ratios of both medians and standard deviations for all existing com-
ponent definitions with respect to the geometric mean of the two horizontal com-
ponents, which is currently the most widely used in prediction equations. The stan-
dard deviations on the ratios of the medians are also reported. This article also
discusses the issue of the ratios of different horizontal component definitions in
relation to the specification of seismic input for dynamic structural analyses, high-
lighting the importance of consistency between the component definition used to
derive the elastic design-response spectrum and the way that biaxial dynamic loading
input is prepared.

Introduction

In developing equations for the prediction of horizontal
ground-motion parameters, whether these be the peaks of
acceleration and velocity or response spectral ordinates, a
decision needs to be made regarding how to treat the two
horizontal components of each recorded accelerogram. Dif-
ferent options of treating the two horizontal components
have been employed in the literature, none of which can be
identified as optimal for all applications. The key issue is to
ensure that the selected definition is used consistently at all
stages, from derivation of the ground-motion prediction
equations through to generation of the design-response spec-
trum and its application in structural analysis. The definition
of the horizontal component of motion used in the ground-
motion prediction equation becomes particularly important
when structural analysis is carried out considering seismic
loading in two perpendicular horizontal directions, which in
general, will coincide with the axes of the building. For dy-
namic structural analysis, the input is required in the form
of acceleration time histories, which in general, will be
scaled to match, in some period range and to some specified
criteria, the elastic design-response spectrum. In this situa-

tion, it is essential to correctly identify the horizontal-
component definition employed to derive the response spec-
trum so that the scaling can correctly preserve the
relationship between the two horizontal components of the
accelerogram. For these reasons it is useful to establish
the ratios between the values of different ground-motion pa-
rameters so that appropriate adjustments can be made when
scaling records, either to the accelerogram or to the target
spectrum.

Relationships between the median values of horizontal
motions and between their aleatory variabilities are also re-
quired to achieve compatibility among ground-motion pre-
diction equations using different definitions when these are
combined in a logic-tree framework for seismic-hazard anal-
ysis (Bommer et al., 2005). In each case, the aleatory vari-
ability associated with the empirically derived adjustments
must be propagated into the aleatory variability associated
with the predictive equation. Several adjustments can be
necessary to compensate for different definitions of both the
predicted and explanatory variables used in the equations,
including magnitude scale and distance metric. For the latter,
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Figure 1. Distribution of records in dataset with
respect to moment magnitude, hypocentral distance,
and site class.

Scherbaum et al. (2004) have derived distributions for the
relationships between different measures of the source-to-
site distance using randomly distributed receivers. Scher-
baum et al. (2005) examine the impact of all of the adjust-
ments on the converted ground-motion models and
demonstrate that distance conversion has the greatest impact
on the median values of the parameter, in particular, at short
distances. The impact on the aleatory variability of applying
adjustments for different distance metrics is also very high
because of the very large differences that can exist between
pairs of metrics, especially for stations close to the earth-
quake source. If the seismic sources are faults of known
geometry, then the problem is obviated because each equa-
tion can be employed with its own distance definition. Al-
though computationally intensive, the necessity for the dis-
tance conversions for area sources can also be avoided by
simulating individual earthquake sources within source
zones in such a way as to allow the source-to-site distance
to be calculated according to the definition used in each pre-
dictive equation. The large penalty on the sigma value can
thus be avoided, but not so for the magnitude and component
conversions. The standard deviation associated with empir-
ical relationships between different magnitude scales is gen-
erally of the order of 0.2 units. Therefore the penalty paid
by applying magnitude-scale conversions is to increase val-
ues of the standard deviation on the base-10 logarithm of
the ground-motion parameter from 0.25 to 0.256 for peak
ground acceleration (PGA) and from 0.32 to 0.335 for the
spectral acceleration at 1.0 sec, using for illustrative pur-
poses the equations of Ambraseys et al. (1996). Although
these increases may not appear to be very large, the impact
on the seismic hazard can be significant, in particular, when
low annual frequencies of exceedance are considered. For
this reason, as well as estimating median ratios between the
median values of ground-motion parameters obtained using
different horizontal-component definitions, it is also neces-
sary to estimate the standard deviations associated with these
ratios to correctly propagate the uncertainty.

This article presents a derivation of ratios between me-
dian values and between aleatory variabilities for a large
number of horizontal-component definitions. This article is
effectively an extension of the brief treatment of the same
subject presented in Bommer et al. (2005), with many more
definitions of the horizontal component of motion, because
the earlier article only addressed those definitions that were
used in the particular equations combined in the logic-tree
analysis performed therein for illustrative purposes. The pa-
rameters for which the ratios are calculated are 5%-damped
spectral accelerations for 77 response periods from 0.01 to
5.0 sec, PGA and peak ground velocity (PGV). The dataset
employed for this analysis consisted of 949 records from the
Next Generation of Attenuation (NGA) database (PEER,
2005). The NGA database contains records from shallow
crustal earthquakes that originate mainly from the western
United States and Taiwan, with some records coming from

other active zones such as Turkey. The criteria for the se-
lection were the following:

• Records from the Chi-Chi earthquake in 1999 or from any
of its aftershocks were excluded to avoid possible bias due
to an over-representation of the Chi-Chi sequence, which
contributes more than 50% of the total of 3551 records in
the NGA database.

• Records with PGA smaller than 0.05g were excluded to
focus on motions that are of engineering significance and
to avoid problems with resolution of analog records. The
PGA was in this case defined as the geometric mean of the
maximum acceleration of the x and y components, as re-
corded (i.e., longitudinal and transverse).

• Records with a maximum usable period of less than 0.5 sec
were excluded. Each remaining record was only used up
to its maximum usable period, which is specified in the
summary file accompanying the NGA database.

• Earthquakes for which the hypocentral depth was not spec-
ified were excluded because the hypocentral depth is used
as a parameter in the regression analysis.

The records in the dataset come from 103 different earth-
quakes that contribute between 1 and 138 accelerograms.
The records represent a wide range of different characteris-
tics such as magnitude, distance, rupture mechanism, site
class, and instrument type:

• Magnitude and distance. The magnitude-distance distri-
bution is shown in Figure 1, which also indicates the con-
tribution of records from different National Earthquake
Hazards Reduction Program (NEHRP) site classes to the
dataset.

• Source mechanisms. 333 records from 51 earthquakes with
a strike-slip mechanism; 36 records from 12 normal-
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faulting earthquakes; 329 records from 21 reverse-faulting
earthquakes; 223 records from 9 reverse-oblique earth-
quakes; 25 records from 7 normal-oblique earthquakes; 3
records from 3 earthquakes with undefined mechanism.

• NEHRP site classes: 8 records from site class A; 37 records
from site class B; 358 records from site class C; 534 re-
cords from site class D; 11 records from site class E; 1
record where the site was not specified.

In the next section the different definitions of the hori-
zontal component of motion employed in this study are
defined. Then, the steps involved in transforming a ground-
motion prediction equation (GMPE) derived for one com-
ponent definition to another are presented and discussed in
the third section. The ratios of median values and of aleatory
variabilities derived from this dataset are given in the fourth
and fifth sections of this article respectively. This article con-
cludes with a brief overview of the main conclusions and a
discussion of the applications of the results to GMPEs and
to preparing input records for dynamic structural analysis.

Definitions of the Horizontal Component of Motion

Table 1 summarizes the different definitions of horizon-
tal ground-motion measures considered in this study and in
addition, indicates which definitions are widely used in
ground-motion prediction equations and which are relevant
to the scaling of natural accelerograms for use in dynamic
structural analysis. All known definitions are included, for
completeness, even though at least two are indicated to be
effectively obsolete with respect to GMPEs and irrelevant to
dynamic loading for structural analysis. These indications
should be borne in mind when interpreting the results and
their significance.

The calculation of most of the definitions is very
straightforward, with the exception of GMRotD50 and
GMRotI50, for which the reader is referred to the companion
article by Boore et al. (2006), and the principal directions.
The principal directions are determined as the set of orthog-
onal directions for which the cross-correlation qxy ! lxy/(rx

ry) is zero and the variances of the two components max-2ri

imum and minimum, respectively, are:

Td

1 22r ! (a (t) " a (t)) dt (1)x x x!Td
0

Td

1 22r ! (a (t) " a (t)) dt (2)y y y!Td
0

Td

1
l ! (a (t) " a (t))(a (t) " a (t))dt (3)xy x x y y!Td

0

with ai(t) nonzero mean time history, mean value ofa (t)i

time history ai (t) over Td. The duration Td here is taken as
the entire record length.

The geometric mean is now the most widely used
horizontal-component definition in GMPEs. The geometric
mean of the spectral values of the x and y components for
the period Ti is defined as:

Sa (T ) ! Sa (T ) • Sa (T ) . (4)"GMxy i x i y i

As can be easily demonstrated, this is equal to the anti-log
of the arithmetic mean of the logarithms of the accelerations
in the two orthogonal directions. Because this is currently
the most widely used definition of the horizontal component
of motion, it is adopted as the reference definition for cal-
culating ratios in this study.

Conversions of GMPE for Different Horizontal-
Component Definitions

GMPEs can be split into two parts, the first one repre-
senting the logarithmic mean value of the ground-motion
measure and the second one representing the variation from
the logarithmic mean:

log Sa ! l # e • r , (5)i logSa logSai i

where represents the expected value of the logarithmllogSai

of the spectral acceleration (or other ground-motion param-
eter) and the second term is the aleatory variability associ-
ated with the prediction. Commonly, the term representing
the aleatory variability is split into , the standard de-rlogSai

viation of log Sai and e, the number of logarithmic standard
deviations above or below the logarithmic mean. The aim of
this section is to present a method to convert a GMPE for
geometric mean (GMxy) component definition to an equiv-
alent GMPE for a different horizontal-component definition,
Sai (e.g., the envelope of the x and y components). Hence,
the GMPE for SaGM:

log Sa ! l # e • r (6)GM logSa tot, logSaGM GM

is known, whereas and need to be determinedl rlogSa tot, logSai i

to derive the GMPE for Sai. Note that for simplicity, when
used as a subscript herein, GMxy is written simply as GM.
The variability is annotated as total variability of the loga-
rithm of the spectral acceleration to point out that different
components of uncertainty are considered to contribute to
the variance of the ground-motion measure, as discussed at
the end of this section.

To transform the GMPE for SaGM to a GMPE for Sai one
needs to make assumptions regarding the distributions of
these ground-motion measures. In general, it is assumed that
the spectral acceleration of a component with an arbitrary
orientation is lognormally distributed. Hence the geometric
mean of the spectral acceleration of two orthogonal com-
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Table 1
Definitions of the Horizontal Component of Motion Considered in This Study

Symbol Definition GMPE*
Ratio to
GMxy

† DSA‡

xx, y Orientation as recorded. Commonly the orientation of the recording instruments is essentially
arbitrary with respect to the fault alignment (very often north–south and east–west) and is
generally not correlated to the orientation of nearby faults.

$ A $

FN, FP Fault-normal and fault-parallel components $§ B $
Principal 1
Principal 2

Components along principal directions (see text) % B $

AMxy Arithmetic mean of spectra of x and y components %& — %
GMxy Geometric mean of spectra of x and y components $ A $
Both Both horizontal components of a record are considered and treated as two independent realizations

of a random process. This definition was used, in particular, when ground-motion data were still
very sparse (e.g, McGuire, 1977).

$ A $

Random Random choice of one horizontal component from each accelerogram %# — $
GMRotD50 This component definition accounts for the random orientation of the horizontal axis system

by choosing, at each response period, the median value of the geometric mean from all possible
orientations (see the companion paper by Boore et al., 2006). To determine the median value
of all possible orientations the components were rotated with a angle increment of 1.0!.

$ B %

GMRotI50 This ground-motion measure is an approximation of GMRotD50 with a constant axis orientation
for all periods, which minimizes the sum of differences between GMRotI50 and GMRotD50
over all considered periods (Boore et al., 2006).

$ B $

Larger PGA From the x and y components, the one with the larger PGA is chosen and used for all response periods. %** — %
Env Envelope of x and y spectra: At each period the larger spectral ordinate of the x and y components

is chosen. This is the common understanding of the “larger component” definition.
$ C %

MaxD At each period the maximum spectral ordinate from all possible orientations of the horizontal axis
system is determined. This definition differs from GMRotD50 only regarding the considered fractile:
MaxD is hence defined as the 100th fractile of the spectral ordinates obtained.

$ B %

MaxI This ground motion measure is determined following a procedure similar to the one used by Boore
et al. (2006) but determining an approximation of MaxD instead of GMRotD50 with a constant axis
orientation. The objective function for the angle is slightly different from the one specified by
Boore et al. (2006) because it considers the differences between MaxI and MaxD only for periods
greater than 0.5 sec.

$ B $

*This indicates whether the definition has been widely used in ground-motion prediction equations; a % indicates that the definition is not in common
use and therefore the nature of the distribution of the residuals in the ratio with respect to the GMxy component is not classified.

† Classification indicating the degree to which the residual distribution for the ratio of each parameter to GMxy approximates to lognormal: A, effectively
exact match, in most cases by definition; B, not exact but a reasonable approximation; C, clearly not a lognormal distribution. Classifications not given for
definitions not widely employed in ground-motion prediction equations (see footnote *).

‡ DSA, dynamic structural analysis. Relevance to the preparation (selection and scaling) of accelerograms for application in dynamic analysis. Any
definition that is used for predictive equations is relevant in so much as it can define the target elastic response spectrum, but herein relevance specifically
means that it can correspond to the treatment of recorded accelerograms as applied in structural analysis.

§This definition is classified as being relevant, although to date it has been used in relatively few prediction equations (e.g., Bray and Rodriguez-Marek,
2004), having been employed rather in empirical adjustments for the effects of rupture directivity (Somerville et al., 1997).

&The arithmetic mean would properly only be employed in equations derived without the logarithmic transformation. Campbell (1981) is believed to
have used the arithmetic mean of the horizontal components of each accelerogram, but this equation has long been superseded and is therefore obsolete.

#In the compendium of PGA and SA prediction equations by Douglas (2003), only two equations are reported to have used this definition: Cornell et
al. (1979), which is now obsolete, and Spudich et al. (1996), which has been superseded by Spudich et al. (1999), which abandoned this definition.

**To the knowledge of the authors, this definition has only been employed by Sabetta and Pugliese (1996); although these equations are still in use in
Italy, the authors of this article do not believe that this definition will be used by others (certainly its use would not be encouraged) and that it therefore
has a limited shelf life.

ponents x and y with arbitrary orientation is also lognormally
distributed. Therefore, the ratio of Sax/SaGM is also lognor-
mally distributed. This is illustrated in Figure 2 which shows
a normal distribution fitted to the ratio log(Sax/SaGM) at
T ! 1.0 sec. The actual and the fitted distribution correspond
well. For some ratios the lognormal distribution is a very
good approximation; these ratios are indicated with the letter
A in the column GMPE in Table 1. For most others the log-
normal distribution is a reasonable approximation, which is
indicated with the letter B.

From the component definitions that are commonly used
for GMPE only the ratio log(Saenv/SaGM) is significantly
skewed and the lognormal distributed is not suited to de-
scribe the distribution of the ratio of the envelope to the
geometric mean; this is indicated with the letter C in Table 1.
In this case the log ratios are better fitted by a Gamma dis-
tribution (Fig. 3).

The skewness becomes even more apparent if a hori-
zontal-component definition other than the geometric mean
is used as a reference measure. The ratio Saenv/Sarandom is
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Figure 4. Conditional distributions of Saenv/Sarandom: fitted normal and Gamma dis-
tribution to log(Saenv/Sarandom) for log(Saenv/Sarandom) " 0.

Figure 3. Fitted normal and Gamma distribution to log(Saenv/SaGMxy).

Figure 2. Fitted normal distribution to log(Sax/SaGMxy).

used as an example: for a large sample, half of the ratios
Saenv/Sarandom, by definition, will be equal to 1.0. This is the
case when the randomly picked component happens to be
the larger of the two components; in the other cases, the ratio
Saenv/Sarandom will be larger than 1.0. Figure 4 shows the
distribution of the latter cases, that is, the distribution of the

ratio Saenv/Sarandom for ratios "1. Again, the conditional dis-
tribution of the log ratio corresponds well to the fitted
Gamma distribution. The median of the ratios Saenv/Sarandom

will be equal to 1.0.
Apart from the ratio Saenv/SaGM all other ratios with

respect to GMxy can be approximated by the lognormal dis-
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tribution. For these, the GMPE equation for Sai can be written
in the form of equation (5). The methodology for conversion
outlined in the following is based on the assumption that the
ratio Sai/SaGM can be approximated by a lognormal distri-
bution. For this reason, we advise against applying the meth-
odology to a conversion from SaGM to Saenv for subsequent
use of the converted equation in probabilistic seismic-
hazards assessment (PSHA) because, as explained earlier, the
hazard calculations are generally based on the assumption
of a lognormal distribution of the residuals.

To convert a GMPE from SaGM to a second measure Sai ,
estimates for the mean and standard deviation of log Sai are
required. Under the assumption that Sai is lognormally dis-
tributed, the mean of log Sai corresponds to the median of
Sai. The median of Sai can be estimated as

Saiˆ ˆSa ! Sa • , (7)i GM # $Sa medianGM

where the median of SaGM is obtained from the known GMPE
and the multiplier is from analysis of strong-motion records.
Values of median ratios for different definitions of Sai are
presented in the next section.

As a second parameter for the adjusted GMPE, the vari-
ability of Sai has to be estimated. Apart from the aleatory
uncertainty of ground motion that is obtained through re-
gression analysis, the variability associated with the estimate
of the ratio log(Sai/SaGM) needs to be added as a result of
error propagation. The total variance of log Sai can hence be
written as:

2rlogSa2 2 2ir ! r # r , (8)tot, logSa logSa logSa /Sa# $i GM i GMrlogSaGM

where the aleatory variability of log SaGM is obtained from
the known GMPE, the multiplier from re-r /rlogSa logSai GM

gression analysis of the dataset for the different definitions
of the horizontal component of motion (see section on ratios
of sigma values) and the standard deviation of log(Sai/SaGM)
by fitting a normal distribution to the log ratios (see the next
section).

Median Ratios of Ground-Motion Amplitudes
and the Associated Variability

In this section median ratios of Sai/SaGM calculated
from the dataset shown in Figure 1 are presented and the
variance of log(Sai/SaGM) computed, assuming Sai/SaGM is
lognormally distributed. The median ratios are shown in Fig-
ure 5. For completeness the median ratios for the different
definitions for PGA and PGV are listed in Table 2. Note that
figure 2 in Bommer et al. (2005) incorrectly displayed mean
ratios although labeled as median ratios; this serves as an
erratum and Figure 5 thus supersedes the left-hand panel of
figure 2 in Bommer et al. (2005).

The median ratios of the following component defini-
tions with respect to SaGM are very close to unity over the
entire period range: Sax, Say, Sarandom, Saboth, SaGMrotD50, and
SaGMrotI50. The median ratios SaFN/SaGM and Saprinc1/SaGM

increase with period range. We believe that this can be at-
tributed to the stronger polarization of ground-motion waves
at longer periods. The median ratio of SalargerPGA/SaGM is the
only ratio that decreases with period. For T ! 0.0 sec the
component with the larger PGA is equivalent to the envelope
of the two components. The longer the period, the less the
envelope of the components is correlated to the component
with the larger PGA. At long periods almost no correlation
occurs between the component with the larger PGA and the
component with the greater spectral acceleration, and se-
lecting according to the larger PGA is almost equivalent to
choosing randomly. The median ratios of the following def-
initions with respect to the geometric mean component in-
crease with period: Saenv, SamaxD, and SamaxI. This increase
with period implies that the difference between the smaller
and the larger spectral ordinate of two orthogonal compo-
nents increases with period. This is also attributed to the
stronger polarization of ground-motion waves at longer pe-
riods. Note that the shape of the curve of median ratios of
SamaxI/SaGM depends on the penalty function used for SamaxI

and, in particular, on the periods that are included in com-
puting the penalty function.

To simplify the application the variation of the median
ratios with period is approximated by simple curves. With
exception for the ratio of SalargerPGA/SaGM, the approximate
equations have the following piecewise linear form in the
semilog space:

Sa (T )i j ! (9)# $Sa (T ) medianGM j

C1 T sec ! 0.15 secjlog(T / 0.15)jC # (C "C ) 0.15 sec # T # 0.8 sec1 2 1 jlog(0.8 /0.15) 0.8 sec ! T ! 5.0 sec% j
C2

For the ratio of SalargerPGA/SaGM a simple linear relationship
is suggested:

Sa (T ) TlargerPGA j j! C # (C " C ) T ! 5.0 sec. (10)1 2 1 jSa (T ) 5.0GM jxy

The coefficients C1 and C2 for the different component def-
initions are summarized in Table 3. The mathematical form
of the piecewise linear approximation is very simple and the
agreement between the actual ratios and the approximations
can be easily checked visually by sketching the linear rela-
tionships onto the figure. Coefficients for fault-normal, fault-
parallel, and principal directions are not included because it
is recognized that values will vary significantly between re-
cords with and without rupture directivity effects. In the
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Figure 5. Median ratios of horizontal spectral ordinates for different definitions of
the horizontal components of ground motion with the geometric mean of arbitrarily
orientated components as reference measure. Note that the y axis of the right-hand
panel covers a range of values five times greater than that of the left-hand panel.

analysis of the records no distinction was made between re-
cords with and without directivity effects. Also not included
are values for SamaxI/SaGM because they depend greatly on
the penalty function used to determine the optimum angle
(see Boore et al., 2006).

The standard deviations of the log ratios of spectral or-

dinates are shown in Figure 6 and the standard deviations of
the log ratios of PGA and PGV are listed in Table 1. Figure 6
shows that the standard deviations of the log ratios are small-
est for SaAM/SaGM, SaGMrotD50/SaGM and SaGMrotI50/SaGM.
The values of the standard deviations are, in general, how-
ever, all quite small when compared with the sigma values

Table 2
Median and Standard Deviation of Log Ratios of PGA and PGV Values and Ratios of the Sigmas

Obtained from Regression Analysis for PGA and PGV

PGA PGV

Ratio of PGA Values Ratio R of PGV Values

Median
Std. of

Log Ratio
Ratio R of
rPGA Values Median

Std. of
Log Ratio

Ratio R of
rPGV Values

x/GMxy resp. y/GMxy 1.00 0.07 1.04 1.00 0.09 1.05
AMxy/GMxy 1.00 0.01 1.00 1.00 0.01 1.00
GMRotD50/GMxy 1.00 0.02 1.00 1.00 0.03 1.00
Random/GMxy 1.00 0.07 1.03 1.00 0.09 1.03
Both/GMxy 1.00 0.07 1.05 1.00 0.09 1.05
Larger PGA/GMxy 1.10 0.05 1.02 1.00 0.06 1.03
Envxy/GMxy 1.10 0.05 1.02 1.15 0.06 1.03
MaxD/GMxy 1.20 0.04 1.02 1.25 0.05 1.03
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Table 3
Coefficients for Approximative Equations for Median (C1, C2)

and Standard Deviation (C3, C4) of Log Ratios of Different
Definitions of Components Obtained from Regression Analysis

and Ratios of Sigma Values (R) Approximated by Average
Values over Considered Period Range

C1 C2 C3 C4 R

x/GMxy resp. y/GMxy 1.00 1.00 0.07 0.11 1.05
AMxy/GMxy 1.00 1.00 0.01 0.02 1.00
GMRotD50/GMxy 1.00 1.00 0.02 0.03 1.00
GMRotI50/GMxy 1.00 1.00 0.03 0.04 1.00
Random/GMxy 1.00 1.00 0.07 0.11 1.05
Both/GMxy 1.00 1.00 0.07 0.11 1.05
Larger PGA/GMxy 1.10 1.00 0.05 0.11 1.04
Envxy/GMxy 1.10 1.20 0.04 0.07 1.02
MaxD/GMxy 1.20 1.30 0.04 0.06 1.02

obtained from regression analysis which are typically be-
tween 0.2 and 0.3. Hence, the total standard deviation (see
equation 8) will not be significantly greater than r .logSai

Except for SamaxI/SaGM , which is not included in
Table 3, the variation of the standard deviations with period
is very similar to the variations of median ratios with pe-
riods. Hence, equations with the same functional form are
again used to approximate the standard deviations of the log
ratios:

r (Sa )(T ) ! (11)log GM/Sa jl

C3 T sec ! 0.15 secjlog(T /0.15)j 0.15 sec # T # 0.8 secjC # (C "C )3 4 3 log(0.8 /0.15) 0.8 sec ! T ! 5.0 secj%
C4

Note that equation (11) was also used to describe the stan-
dard deviation of log(SalargerPGA/SaGM). The coefficients C3

and C4 for the different component definitions are summa-
rized in Table 3.

Ratios of Sigma Values

For the final part of the adjustment, it is necessary to
determine the ratio between the aleatory variabilities that
result from using different definitions of the horizontal com-
ponent. To obtain these estimates, simple GMPEs have been
derived by performing regression analyses on the dataset
shown in Figure 1, using each of the horizontal-component
definitions considered. Note that in figure 2 of Bommer et
al. (2005) the residuals were calculated using one equa-
tion—Abrahamson and Silva (1997) which uses the geo-
metric mean component—in all cases, which is less rigorous
than the approach applied here.

With exception of the definition “both components,” the
sigma values for each horizontal component definition were
determined by using a one-stage maximum likelihood re-
gression analysis (Joyner and Boore, 1993). The functional

form of the ground-motion prediction equation that was used
for the regression analysis included linear and quadratic
terms of a magnitude and a geometric spreading term. The
sigma values of the ground-motion measure “both compo-
nents” were determined as the sum of the variance of the
ground-motion measure GMxy and the intracomponent vari-
ability determined from the difference of the x and y com-
ponents (Boore, 2005). The aim of the regression analysis
was not to derive state-of-the-art GMPEs but to derive, by
simple means, a set of GMPEs for different horizontal-com-
ponent definitions by using the same dataset and with the
same regression method. We assume that the ratios of the
sigma values are fairly insensitive to assumptions made dur-
ing the regression analysis even if these do affect the actual
sigma values themselves.

The sigma ratios are shown in Figure 7; this figure su-
persedes the right-hand panel of figure 2 in Bommer et al.
(2005). Most of the curves in Figure 7, in particular, the
sigma ratios and , showr /r r /rlogSa logSa logprinc1 logSaFN GM GM

fairly erratic variation over the period range. No physical
reason for this behavior could be found and it is assumed
that this variation reflects the distribution of the dataset.
Therefore, we suggest using values that have been averaged
over the period range for analysis. The averaged values are
tabulated as variable R in Table 2 (for PGA and PGV) and
in Table 3 (for spectral ordinates). All sigma ratios except

, andr /r r /r r /logSa logSa logSa logSa logSaAM GM GMrotD50 GM GMrotI50

are greater than one. The ratios might not be largerlogSaGM

but, as pointed out previously, even small differences in r
might have an impact on the results of PSHA in particular if
low probabilities of exceedence are considered.

Conclusions and Discussion

A practical approach for the conversion between differ-
ent definitions of the horizontal component of ground mo-
tion has been presented. The approach is based on median
ratios of the definitions, the variance of these ratios, and the
ratios of standard deviations associated with GMPEs. Em-
pirical values of these ratios have been derived from a large
strong-motion dataset, presented in graphical form, and ap-
proximated as simple equations for easy application. The
geometric mean GMxy has been chosen as reference measure
for all ratios because it is the most commonly used definition
in current GMPEs.

The ratios have been derived using a dataset of acceler-
ograms from shallow crustal earthquakes and the results
have been found relatively insensitive to the actual dataset
employed. However, the ratios have not been checked for
subduction events or recordings from stable continental re-
gions, and so should be applied with caution to such settings.
To explore the applicability of the ratios to such regions
could be the subject of future studies, as could exploring
variations of the ratios with magnitude, distance, and other
explanatory variables. Herein the ratios have assumed to
vary only with response period. In addition, note that, for
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Figure 6. Standard deviation of logarithmic ratios of horizontal spectral ordinates
for different definitions of the horizontal components of ground motion with the geo-
metric mean of arbitrarily orientated components as reference measure.

reasons of space, all ratios have been reported with respect
to one definition (GMxy); it must be acknowledged that this
will result in reduced accuracy when converting between
two other definitions. However, in view of current domi-
nance of the geometric mean definition—both in GMPEs and
in PSHA—such conversions are unlikely to be required very
often.

The results include ratios of median values and ratios
of sigma values, plus variances associated with the former.
In the strictest sence, the results should also include the var-
iances on the sigma ratios, but these were judged too small
to be included, especially because most of the sigma ratios
are already very close to unity. By way of illustration, the
conversion from GMxy to the MaxD component at a response
period of T ! 1.0 sec is used: with the coefficients derived
from the approximate equations, the median of ŜaMaxD (T !
1.0 sec) would be ŜaGM • 1.30 and the total variance of log
SaMaxD would vary as . For the2 2 2r (T) • 1.02 # 0.06logSaGM

same case as Ambraseys et al. (1996) used for illustration
of the impact of magnitude conversions in the introductory
section, this transformation increases the sigma value from
0.32 to 0.332, with the increase due to equal contributions
from sigma ratio and from the propagation of the variability
associated with the ratios of the median values. The net im-

pact is therefore of the same order as that of the adjustment
for different magnitude scales.

The method of conversion that has been proposed is
based on the assumption that both horizontal ground-motion
measures and their ratio are longnormally distributed. The
results showed that this assumption holds reasonably well
for most pairs of horizontal-component definitions, but not
for a few; for these other ratios, the Gamma distribution was
found to be more appropriate. The most significant case for
which the lognormal distribution was found not to fit the
residuals is the ratio of the envelope of the two orthogonal
response spectra and the geometric mean. This is important
because these are currently the two most widely used defi-
nitions in ground-motion prediction equations and hence this
is precisely the conversion that it is most likely to be required
for setting up logic trees for seismic-hazard analysis. Given
that it cannot be assumed that the transformed predictive
equation would have lognormally distributed residuals, these
should, strictly speaking, not be used to provide input to
PSHA. This fact, combined with the large penalty in terms
of increased aleatory variability as a result of applying
these and other adjustments for parameter incompatibilities
(Scherbaum et al., 2005), points to the need to establish
standard definitions for predicted and explanatory variable
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Figure 7. Sigmas obtained from regression analysis for different definitions of the
horizontal components of ground motion with the geometric mean of arbitrarily ori-
entated components as reference measure.

to be used in ground-motion prediction equations. The cur-
rent diversity in the use of different parameter definitions
necessitates complicated adjustments when equations are
combined in a logic-tree framework (Bommer et al., 2005)
and these adjustments lead to unavoidably inflated sigma
values.

The formulation presented in this article is focused ex-
plicitly on the adjustment of GMPEs using one component
definition for use in seismic-hazard analysis where the out-
put is required in terms of another definition. In some cases,
conversions between different definitions of the horizontal
component of ground motion might be required at a later
stage of the project, for example, after a PSHA has been
performed and the engineer is faced with a uniform hazard
spectrum (UHS). In this case, the UHS for the component
definition which was used in the PSHA needs to be converted
to a spectrum for a different definition. At this stage, it is no
longer possible to separate the median value and aleatory
variability in the conversion process and the conversion in-
evitably becomes more of an approximation. The median
ratios as presented in Figure 5 could serve as a first estimate
for the multiplier of the spectrum. If from disaggregation of
the hazard function an estimate for a representative number,
e, of standard deviations above the median is available a

second, and probably better, estimate for the multiplier at
each period of the spectrum could be derived as a weighted
sum of the median ratio and the sigma ratio. The weighting
factors would be the relative contributions of median and
above-median ground motion to the spectral ordinate of the
original spectrum.

The results of this study are also relevant to the issue of
selecting and scaling natural accelerograms for use in dy-
namic structural analysis. When suites of accelerograms are
prepared for such analyses, they will invariably be adjusted
in some sense to a target elastic design-response spectrum,
hence, the component definition used in the derivation of the
latter must be clearly stated, in particular, when bidirectional
dynamic input is required. In such cases, the ratios of median
values presented in this article can be useful to guide scaling
of orthogonal acceleration time series to both match the
target-response spectrum and retain the natural differences
between the two perpendicular components of motion.
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