
Release notes for ShakeMap r1208:

Sorry for the lengthy install notes, but the new config file management takes a little
explaining. There are also two special notes for U.S. regional networks.

To perform this update, you’ll need to install the Perl module DateTime. It is available
through CPAN and many of the package managers that are used by various flavors of
Linux/Unix (yum, dpkg, MacPorts, etc.). Solaris users: I’ve had reports that installing
DateTime required a fairly significant effort. DateTime has quite a few dependencies, so
use of CPAN or a package manager is strongly recommended. See the Appendix for a list
of DateTime’s dependencies.

You will also need the system command merge (i.e., the three-way file merge). Most
systems have this already installed as part of the RCS or CVS packages, but for Solaris,
in particular, you may need to install one or the other package (RCS or CVS) to get
merge. See Note to Solaris Users, below.

As usual, “svn –r1208 update” and “make” do the update, but before you do anything
please read the section on the new config file update program “configconfig2,” below. If
you have an unofficial version of ShakeMap with a release number greater than about
740 (the last official release was 687), then you already have configconfig2, but it’s still
worth reading below to know what it is doing.

There is a new config file update program configconfig2. The previous method of
updating configuration files was not optimal. This revision includes a new approach
based on the ‘merge’ system command. Merge does a three-way compare to combine
separate changes to an original. It can generally do this without user intervention unless
there are conflicts between the changed versions. It should greatly simplify the process of
upgrading ShakeMap when config files change, especially after this initial installation.

Check that your system has ‘merge’ the three-way file merge command. Every system
I’ve encountered has it by default, but if yours doesn’t, you’ll need to install it. It’s
typically part of CVS or RCS or other version control systems.

From an upgrade point of view, configconfig2 works much like its predecessor: it reports
which files have been added, which have been removed, which have been modified
(creating a backup copy of your old config file with a .BAK extension), but now also
reports which updated files require action on your part. The new version will also operate
on the files in your “zone” (or “zone2”) directory, and can update event-specific configs
in your data directory.

Because this is the first time we’ve used it, I recommend a little extra caution. Before you
do ‘make’ for this upgrade:

1. Edit existing config files and remove unwanted comments of the type:

<<<< Local Modifications >>>>
addon_code : smgl
<<<< End local modifications >>>>

configconfig2 doesn’t delete your comments, so this kind of junk will hang around
forever if you don’t delete it. Don’t forget the files in the zone (or zone2) directory if
you use it.

2. The config directory seems to accumulate a lot of cruft on many systems. Now might
be a good time to clean it up. In particular, may wish to get rid of old, unnecessary
*.BAK files.

3. Copy the config directory for safety:

% cd <shake_home>
% mkdir config_safe
% cp –r config config_safe

You can delete config_safe once you’re sure the config process went cleanly.

4. Proceed with the normal update and make process.

Once you’ve run ‘make,’ you should review the output to determine if any files had
conflicts. If a file is given an ‘ok’ it did not have conflicts. Files with conflicts will say
so. You must edit these files and resolve the conflicts. Conflicts within the file will be
indicated with blocks that look like this:

<<<<<<< your_version
[zero or more lines of content from your version of the config file]
=======
[zero or more lines of content from the new version of the config file]
>>>>>>> new_version

Some conflicts will be simple – selecting your version of a parameter setting over the
generic one, for example. Other conflicts will involve larger chunks of content. I’ve noted
that conflicts often emerge when I have removed content (i.e., a parameter and its
documentation) from a file – in those cases you’ll likely be deleting the lines in the
“your_version” chunk of the conflict block. When in doubt, refer to the new version of
the config file found in <shake_home>/src/cfgsrc and preserve its structure. (Note: there
may be more than one block of conflicts in any given file; search until you’ve resolved
them all. Also, make sure you remove the lines demarking the conflict or the ShakeMap
programs will choke on them.)

I’ve done this on a few installations, and it has been relatively painless. One issue that
does come up is handling config files with non-standard names (e.g.,
transfer.conf.primary & transfer.conf.secondary). In the ‘config’ directory, configconfig2
will only update *.conf files. For example, assume that the machine you are working on
is in ShakeMap backup mode, so transfer.conf is the secondary version configured not to
send out its products (e.g., it is either identical to, or a symbolic link to,
transfer.conf.secondary). It will be updated by configconfig2 when the initial ‘make’ is
done. To finish the update, edit the files as necessary to fix any conflicts that occurred
with the merge, then copy transfer.conf back to transfer.conf.secondary. Next, copy
transfer.conf.primary to transfer.conf and run configconfig2 again (from the config
directory run “../bin/configconfig2 –shake”). Again, edit transfer.conf if necessary to
resolve the conflicts, then copy it back to transfer.conf.primary. Finally, copy
transfer.conf.secondary back as transfer.conf to leave your system in its initial state. (If
you use links instead of copies, it’s a similar procedure: you just point the links back and
forth rather than copying files.)

By default, the make process will also run configconfig2 on the files in the ‘zone’ (and
‘zone2’) directory. In this case, since the files don’t end in .conf, the configconfig2
searches for files that start with the base name of any of the *.conf files in
<shake_home>/src/cfgsrc, and updates all of those. You can run configconfig2 manually
on the zone directories with the “-zone” flag.

Finally, you can run configconfig2 with “-data” and it will recursively descend all the
directories starting from the calling directory and try to update anything that looks
like a ShakeMap config file. While the program has some smarts built in (it won’t try to
update the config files in ShakeMap’s src directory, for instance), it has the potential to
do a lot of damage. (Don’t call it as super user from ‘/’.) There is a ‘-dryrun’ flag that will
tell you what the program would do without actually doing anything – to be safe, I
strongly recommend you always try -dryrun first when using -data. I also recommend that
before you do your data directory wholesale, you try the program on a few specific events
to get an idea of what it is going to do. Remember: the starting directory will be whatever
directory you are in when you execute the command (so don’t run it from
“<shake_home>/bin”.)

If you are using custom config files, Pete Lombard shared a tip:

Some of us have extra programs and config files added to ShakeMap. With the old
"configconfig" program, it made some sense to copy these config files into src/cfgsrc. But
with the new "configconfig2", this gets too complicated with the extra files on
src/cfgsrc/Old/. Its better to remove any copies of the "extra" config files that we may
have put into src/cfgsrc. […] (configconfig2 will note these files as old or unrecognized,
but will otherwise leave them alone.)

db2xml – new behavior – Attention AQMS users!

This update resolves a number of operationally unsatisfying characteristics of db2xml,
especially when used with more than one database (real time and archive databases,
primary and backup systems, etc.) Most of the hard work here was done by Pete
Lombard, so thanks go to him for his efforts.

The major problem was the result of a combination of issues: 1) Because of unknown
(and apparently unknowable) database replication times, it is possible that when
ShakeMap is triggered, the real time database will have a more complete set of
amplitudes than the archive database; but because the archive database gets the “exotic”
amplitudes, it will ultimately have the more complete set of amps. There will also be
times and circumstances where a union of the two databases’ sets of amps will provide a
more complete set of amps than either of the two individually. 2) If a database is down or
inaccessible, db2xml might a) wait a long time, and/or b) return nothing.

These issues could result in a ShakeMap with few (or no) amps, and possibly delay the
map’s production. The solution has two parts:

1. Oracle clients can wait a long time before timing out on requests to host
computers that are down. Pete writes:

Google for "oracle tcp timeout" and you get several links. Basically, you create a
file sqlnet.ora with a line like:

tcp.connect_timeout = 5

This file goes in network/admin/ under your $ORACLE_HOME directory. If the
client cannot connect within the connect_timeout (seconds), the client returns
with a "connection timed out" error.

I have tested this feature, by configuring a non-existent host into db.conf. The
connection does indeed time out at the specified timeout.

We recommend you talk with your DBA, if necessary, and set this up for your
ShakeMap clients. The timeout should be long enough that it doesn’t trigger for
the occasionally slow network, but short enough not to delay db2xml for too long.

2. There is a new version of db2xml that will fork off the database queries and kill
them if they take too long. Please review the documentation in db2xml.conf for
fork_mode and max_wait. Also note that the default query_mode is now 3, which
creates a data file for every database that returns data. If you take advantage of the
new features (and we recommend you do), please do some timing tests – it will
likely be different for different systems/networks/etc. Pete writes:

Regarding the default value for max_wait (120 seconds): that may seem long
when testing with moderate earthquakes. But for the M6.9 and aftershocks
yesterday, the slowest child was taking about 90 seconds to complete. So I feel
comfortable with 120 seconds for max_wait.

Also:

I recommend running db2xml with the -verbose flag, to see the times of
transactions with each database. I added this flag to my retrieve.conf file for
db2xml.

Auxiliary (a.k.a. “Zoom”) Maps

(This note only applies to US regional networks that are using the USGS PDL system to
send ShakeMaps to the USGS. However, other ShakeMap operators should be warned
that the tilde (“~”) character is now a reserved symbol and should not be used in event
IDs, except to designate an auxiliary map.)

There have been requests for the ability to have auxiliary ShakeMaps that are associated
with the primary ShakeMap for a given earthquake. The USGS web site will soon
support this capability, and this ShakeMap release contains a mechanism to designate an
event as an auxiliary map. The short explanation is to create a ShakeMap event ID that
consists of the earthquake event ID followed by a tilde followed by an identifying string.
For example, for and earthquake with the event ID “12345678”, the primary ShakeMap
would use that same event ID (“12345678”), and an auxiliary ShakeMap might use the
event ID “12345678~zoom” (where “zoom” could be any string (within reason): “aux1”,
“los_angeles”, “plus_2_sigma”, etc.) This approach has the advantage that it will use a
unique ShakeMap data directory, and will appear as a separate event on the ShakeMap-
generated web site, but will let the USGS know that the auxiliary maps should be
associated with the primary map. The primary map will appear first in the list of available
maps, and will be marked with a green checkmark to indicate that it is the preferred map.
Auxiliary maps and maps from non-authoritative regions will appear in a list (with
thumbnails) below the primary map. See the pdl_code documentation in transfer.conf for
details.

The designation for scenarios is that the root event ID ends with “_se” (or you
systematically use the –scenario flag when running ShakeMap programs). Ending the
extension with “_se” has no effect. The following table summarizes the options:

Event ID Associated with

Event Id
Scenario? Primary or

auxiliary?
12345678 12345678 no primary
12345678_se 12345678_se yes primary
12345678~zoom 12345678 no aux

12345678_se~zoom 12345678_se yes aux
12345678~zoom_se 12345678 NO! aux
12345678_se~zoom_se 12345678_se yes aux

db2xml and eq2xml have been modified so that when called with a compound event ID
(like “12345678~zoom” they will create a directory structure using that ID, but will
query the database(s) with the base event ID (in this example “12345678”). One or two
other rarely-used programs in the src/xml directory have had similar modifications – they
create the path using the full event ID, but look for a file (in the directory “raw” for
example) using the base event ID.

To run an auxiliary map, you would typically make a new input directory for the event
(e.g., “<shake_home>/data/12345678~zoom/input”), copy the input files from the base
event, edit event.xml to set the correct “evid,” and then run shake with the –dryrun flag.
You can then modify the default commands to your zoom map specifications (e.g.,
change the “lonspan” in grind), and then run them to produce the new map. AQMS users
could skip the first steps and just run retrieve for the new event ID, and then run shake
with the –dryrun flag.

Running auxiliary maps automatically for every event requires more extensive
modifications (including, possibly, a second ShakeMap installation), and is beyond the
scope of this document.

Note: If you are already making auxiliary maps using the same event ID as the primary
(but through a separate ShakeMap installation), you can tell the USGS that the map is
auxiliary by creating a unique product code in transfer.conf. For example, if your current
setting for “pdl_code” is something like “pn<EVENT>”, you would continue using that
in transfer.conf for the primary events, and use something like “pn<EVENT>_zoom” for
the auxiliary map(s) (here, “_zoom” can be any string within reason, and no tilde is
necessary). The only problem with this solution is that it does not create a unique event
ID for the ShakeMap-generated web site, so only the most recently transferred event with
that ID would appear. If you roll your own web site, this shouldn’t be an issue and you
can handle multiple maps with the same ID however you want.

Other significant changes in this release:

contour – There was a bug in contour that would cause a segmentation fault under
certain relatively rare circumstances (large mapped area, high ground motions, choppy
Vs30).

retrieve – No longer exits when run on a scenario. If you don’t want ‘retrieve’ to run on
scenarios, set “scenario_skip : retrieve” in shake.conf (this is the default setting, but may
not be set in your shake.conf for one reason or another). On the other hand, if you do

want retrieve to run for scenarios, make sure to remove “scenario_skip : retrieve” from
shake.conf.

mp – I added source code for the Metadata Parser to the distribution. There is no reason
to change your current mp, I’ve added this for convenience of future installs. mp can be
made and installed in bin by doing “make mp” in <shake_home>. Remember that you set
the path to mp in genex.conf. Note that this compile has not been tested on a wide range
of systems yet, so some tweaking may be necessary. Let me know if you try it and it
gives you problems, and send me the fixes. I’ll try to include fixes in future releases. This
version differs from the official USGS version in that it contains only the code to make
‘mp’ and not the other programs that come with the source download, and I’ve modified
the code as necessary to eliminate a number of warnings from the compiler. Functionally,
it should be identical to the official version.

zoneconfig2 – This is not a replacement for zone_config, and it is unlikely to be used by
most operators. It is a tool that the Global ShakeMap (GSM) system in Golden, CO, uses
to determine GMPE/IPE/GMICE choices for global earthquakes. It has been added to the
distribution purely for our convenience when upgrading the GSM systems. It is not
installed by default. It is Python code and has its own set of dependencies. The only
reason I mention it here is that you may come across it, or the PYTHON macro in
include/macros, and wonder what they are. Just ignore both.

New config file: timezone.conf. This config file supports more flexible handling of dates
and times in ShakeMap. Please read through the documentation in timezone.conf to
understand the new options. In general, you now have considerably more control over the
format (and time zone) of times and dates printed on the maps and web pages. In
addition, earthquake information (in event.xml) can now be in any time zone (with
appropriate setting of the ‘timezone’ attribute), but we hope no one makes use of this
questionable “feature” – event info should really be in GMT/UTC. An unspecified
‘timezone’ in event.xml defaults to GMT. The new configurations generally do not
apply to the timestamps in the ShakeMap log files and screen output, which will
generally be in the computer’s notion of the local timezone. As part of this revision, the
parameter use_utc in web.conf has been removed. In addition, dependence on the Perl
module Time::y2038 has been removed from the code and is no longer required for
ShakeMap installation (actually, it was recommended, not required, but it is still gone).
The new features depend on the Perl module DateTime, so that must be installed on
your system to perform this update.

New GMPE module: ASB13 (Akkar, et al., 2013) is a new GMPE for crustal
earthquakes in Europe and the Middle East.

grind, shake – There is a new flag, -comment, that allows the operator to add a quoted
line of text to info.xml.

grind – Fixed a bug that sometimes caused the MMI bias to be excessively large when
most observations were (or mapped to) MMI 1.0.

mapping – There is a new flag, -nohinges, that suppresses the plotting of the dotted lines
along the hinges of multi-plane faults.

info.xml – The parameters <param>_max (where <param> is one of “mmi,” “pga,”
“pgv,” “psa03,” etc.) now hold the maximum gridded value on land, and we’ve added
new parameters <param>_max_grid that hold the maximum amplitude anywhere in the
grid.

Added BB.pm module for Beyer and Bommer (2006) corrections to amps and sigmas
for converting from various ground motion definitions (e.g., arithmetic mean, random
component, geometric mean) to maximum component; updated all the GMPE modules
(except those with their own built in corrections, and Kanno06 which uses vector sum,
which is not supported). This was formerly handled in an inconsistent, ad hoc way among
the GMPEs. Some GMPEs’ amplitudes may change somewhat, but the effect should not
be large – on the order of a few percent.

To be consistent with the online maps, station and DYFI icons are now triangles and
circles, respectively, in the KML. The KML in general has been revamped (again). The
eventID.kml now only has two links: one to eventID.kmz and one to the organizational
logo image configured in genex.conf. The file eventID.kmz is new – it contains all the
various pieces, icons, images, etc., in one self-contained file. You can use eventID.kmz
without the support of a web server, so it’s handy when working on events you’re not yet
ready to push to the web. All of the earlier KMZ files still exist, though at this point
they’re primarily for the USGS web team to add to their “event” KML (which includes
PAGER, DYFI, and other products).

mapping.conf: Added parameter ‘map_cities_on_pgm’ to allow plotting of city names
on PGA, PGV, and PSA maps. Also added the same parameter to the programs plot_vs30
and view_rcg.

queue and queue_qdds: Improved timestamps of logged output per Bob Dollar and Gary
Gann’s suggestions.

shake, cancel: Change subject of email to “runtime report” rather than “error report” if
normal exit status. Also added event ID to subject line. (Changes per Bob Dollar/Gary
Gann.)

Makefiles: The make process should now handle errors somewhat better – by quitting
more reliably when errors are encountered. Operators should still scan through the output
to look for problems, but hopefully these modifications will make major problems more
apparent. The Makefiles are also faster now.

Many bug fixes and minor enhancements. Most functions now check earthquake depth,
and if it is less than zero, it is set to zero.

Note to Solaris Users

Pete Lombard writes:

If you install the GNU "rcs" package or source code to provide "merge", be sure you also
install the GNU "diffutils" package or source code to provide "diff3". The version of diff3
provided by Solaris is NOT compatible with what GNU merge expects. If installing from
source, be sure to install diffutils first. Then set the DIFF and DIFF3 environment
variables to the locations of your newly installed diff and diff3 programs, respectively.
Otherwise "merge" will get built with the wrong path to diff3.

References:

Akkar, S., M. A. Sandikkaya, and J. J. Bommer (2013). Empirical ground-motion models

for point- and extended-source crustal earthquake scenarios in Europe and the
Middle East, Bull. Earthquake Eng., online 31 May 2013, DOI 10.1007/s10518-013-
9461-4.

Beyer, K., and J. J. Bommer (2006). Relationships between median values and between

aleatory variables for different definitions of the horizontal component of motion,
Bull. Seism. Soc. Am., 96, 1512-1522.

Appendix – Perl modules required for module DateTime

Pete Lombard kindly supplied a list of modules (in the order they should be installed)
required for DateTime to install. Again, I highly recommend using CPAN or a package
manager to do the install because they will (usually) take care of all of this for you.

parent
version-0.9906
Test::Simple
CPAN::Meta::Requirements
File::Path
File::Temp
CPAN::Meta::YAML
Parse::CPAN::Meta
CPAN::Meta
Perl::OSType
Path::Tools
Locale::Maketext::Simple
Params::Check
Module::CoreList
Module::Load
Module::Metadata
Module::Load::Conditional

IPC::Cmd
ExtUtils::CBuilder
ExtUtils::Install
ExtUtils::Manifest
File::Copy::Recursive
ExtUtils::Command
JSON::PP::Compat5006
ExtUtils::Manifest
ExtUtils::MakeMaker
ExtUtils::ParseXS
Pod::Escapes
Pod::Simple
podlators
Test::Harness
Module::Build
Try-Tiny-0.22
Test-Fatal-0.013
Test-Tester-0.109
Test-NoWarnings-1.04
Test-Deep-0.112
Module-Runtime-0.014
Test-Requires-0.07
Module-Implementation-0.07
Attribute::Handlers
Params-Validate-1.10
Exporter-Tiny-0.038
List-MoreUtils-0.400_009
DateTime-Locale-0.45
ExtUtils-Config-0.007
ExtUtils-Helpers-0.022
ExtUtils-InstallPaths-0.010
Getopt::Long
Module-Build-Tiny-0.036
Package-Stash-XS-0.28
Dist-CheckConflicts-0.11
Package-Stash-0.36
Params-Util-1.07
Sub-Install-0.927
Data-OptList-0.109
Class-Load-0.21
Class-Singleton-1.4
DateTime-TimeZone-1.69
Test-Warnings-0.014
DateTime-1.10

